These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 30365183)
1. Cytoglobin ameliorates the stemness of hepatocellular carcinoma via coupling oxidative-nitrosative stress signals. Zhang J; Pei Y; Yang W; Yang W; Chen B; Zhao X; Long S Mol Carcinog; 2019 Mar; 58(3):334-343. PubMed ID: 30365183 [TBL] [Abstract][Full Text] [Related]
2. ELK3 promotes the migration and invasion of liver cancer stem cells by targeting HIF-1α. Lee JH; Hur W; Hong SW; Kim JH; Kim SM; Lee EB; Yoon SK Oncol Rep; 2017 Feb; 37(2):813-822. PubMed ID: 27959451 [TBL] [Abstract][Full Text] [Related]
3. MK2206 overcomes the resistance of human liver cancer stem cells to sorafenib by inhibition of pAkt and upregulation of pERK. Zhai B; Zhang X; Sun B; Cao L; Zhao L; Li J; Ge N; Chen L; Qian H; Yin Z Tumour Biol; 2016 Jun; 37(6):8047-55. PubMed ID: 26711788 [TBL] [Abstract][Full Text] [Related]
4. Cancer Stem Cell Functions in Hepatocellular Carcinoma and Comprehensive Therapeutic Strategies. Liu YC; Yeh CT; Lin KH Cells; 2020 May; 9(6):. PubMed ID: 32466488 [TBL] [Abstract][Full Text] [Related]
5. lncARSR promotes liver cancer stem cells expansion via STAT3 pathway. Yang C; Cai WC; Dong ZT; Guo JW; Zhao YJ; Sui CJ; Yang JM Gene; 2019 Mar; 687():73-81. PubMed ID: 30391438 [TBL] [Abstract][Full Text] [Related]
6. KCNN4 Promotes the Stemness Potentials of Liver Cancer Stem Cells by Enhancing Glucose Metabolism. Fan J; Tian R; Yang X; Wang H; Shi Y; Fan X; Zhang J; Chen Y; Zhang K; Chen Z; Li L Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805963 [TBL] [Abstract][Full Text] [Related]
7. Increased Oxidative Phosphorylation Is Required for Stemness Maintenance in Liver Cancer Stem Cells from Hepatocellular Carcinoma Cell Line HCCLM3 Cells. Liu G; Luo Q; Li H; Liu Q; Ju Y; Song G Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32722385 [TBL] [Abstract][Full Text] [Related]
8. High expression of MAGE-A9 contributes to stemness and malignancy of human hepatocellular carcinoma. Wei Y; Wang Y; Gong J; Rao L; Wu Z; Nie T; Shi D; Zhang L Int J Oncol; 2018 Jan; 52(1):219-230. PubMed ID: 29138811 [TBL] [Abstract][Full Text] [Related]
9. Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133. Hur W; Ryu JY; Kim HU; Hong SW; Lee EB; Lee SY; Yoon SK Sci Rep; 2017 Apr; 7():45557. PubMed ID: 28367990 [TBL] [Abstract][Full Text] [Related]
10. Prx2 links ROS homeostasis to stemness of cancer stem cells. Son YW; Cheon MG; Kim Y; Jang HH Free Radic Biol Med; 2019 Apr; 134():260-267. PubMed ID: 30611866 [TBL] [Abstract][Full Text] [Related]
11. CD133 Liu K; Hao M; Ouyang Y; Zheng J; Chen D Sci Rep; 2017 Jan; 7():41499. PubMed ID: 28134312 [TBL] [Abstract][Full Text] [Related]
12. 8-bromo-5-hydroxy-7-methoxychrysin targeting for inhibition of the properties of liver cancer stem cells by modulation of Twist signaling. Ren KQ; Cao XZ; Liu ZH; Guo H; Quan MF; Liu F; Jiang L; Xiang HL; Deng XY; Cao JG Int J Oncol; 2013 Nov; 43(5):1719-29. PubMed ID: 23970349 [TBL] [Abstract][Full Text] [Related]
13. C-terminal truncated hepatitis B virus X protein promotes hepatocellular carcinogenesis through induction of cancer and stem cell-like properties. Ng KY; Chai S; Tong M; Guan XY; Lin CH; Ching YP; Xie D; Cheng AS; Ma S Oncotarget; 2016 Apr; 7(17):24005-17. PubMed ID: 27006468 [TBL] [Abstract][Full Text] [Related]
14. MEK1 signaling promotes self-renewal and tumorigenicity of liver cancer stem cells via maintaining SIRT1 protein stabilization. Cheng J; Liu C; Liu L; Chen X; Shan J; Shen J; Zhu W; Qian C Oncotarget; 2016 Apr; 7(15):20597-611. PubMed ID: 26967560 [TBL] [Abstract][Full Text] [Related]
15. Lipopolysaccharide supports maintaining the stemness of CD133(+) hepatoma cells through activation of the NF-κB/HIF-1α pathway. Lai FB; Liu WT; Jing YY; Yu GF; Han ZP; Yang X; Zeng JX; Zhang HJ; Shi RY; Li XY; Pan XR; Li R; Zhao QD; Wu MC; Zhang P; Liu JF; Wei LX Cancer Lett; 2016 Aug; 378(2):131-41. PubMed ID: 27208741 [TBL] [Abstract][Full Text] [Related]
16. Oxytetracycline have the therapeutic efficiency in CD133 Song Y; Kim IK; Choi I; Kim SH; Seo HR Sci Rep; 2018 Oct; 8(1):16100. PubMed ID: 30382122 [TBL] [Abstract][Full Text] [Related]
17. CD133 silencing inhibits stemness properties and enhances chemoradiosensitivity in CD133-positive liver cancer stem cells. Lan X; Wu YZ; Wang Y; Wu FR; Zang CB; Tang C; Cao S; Li SL Int J Mol Med; 2013 Feb; 31(2):315-24. PubMed ID: 23233126 [TBL] [Abstract][Full Text] [Related]
18. A new protocol for long-term culture of a specific subpopulation of liver cancer stem cells enriched by cell surface markers. Zhang B; Wang HY; Wang DX; Zeng Q; Fan Z; Xi JF; Nan X; He LJ; Zhou JN; Pei XT; Yue W FEBS Open Bio; 2020 Sep; 10(9):1737-1747. PubMed ID: 32662250 [TBL] [Abstract][Full Text] [Related]
19. Actinomycin D inhibits the expression of the cystine/glutamate transporter xCT via attenuation of CD133 synthesis in CD133 Song Y; Park IS; Kim J; Seo HR Chem Biol Interact; 2019 Aug; 309():108713. PubMed ID: 31226288 [TBL] [Abstract][Full Text] [Related]
20. Clonogenically Culturing and Expanding CD34+ Liver Cancer Stem Cells in Vitro. Park SC; Zeng C; Tschudy-Seney B; Nguyen NT; Eun JR; Zhang Y; Ramsamooj R; Zhang Y; Zhao M; Theise ND; Zhou H; Zern MA; Duan Y Stem Cells Dev; 2015 Jul; 24(13):1506-14. PubMed ID: 25867583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]