These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30365387)

  • 21. A novel bio-heuristic computing algorithm to solve the capacitated vehicle routing problem based on Adleman-Lipton model.
    Wang Z; Ren X; Ji Z; Huang W; Wu T
    Biosystems; 2019 Oct; 184():103997. PubMed ID: 31369836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search.
    Huang X; Zeng X; Han R
    Comput Intell Neurosci; 2017; 2017():3235720. PubMed ID: 28634487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cophenetic Median Trees.
    Markin A; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1459-1470. PubMed ID: 30222583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptiveness in monotone pseudo-Boolean optimization and stochastic neural computation.
    Grossi G
    Int J Neural Syst; 2009 Aug; 19(4):241-52. PubMed ID: 19731398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On complexity of optimal recombination for binary representations of solutions.
    Eremeev AV
    Evol Comput; 2008; 16(1):127-47. PubMed ID: 18386998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fitness Probability Distribution of Bit-Flip Mutation.
    Chicano F; Sutton AM; Whitley LD; Alba E
    Evol Comput; 2015; 23(2):217-48. PubMed ID: 24885680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Parameterised Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms.
    Corus D; Lehre PK; Neumann F; Pourhassan M
    Evol Comput; 2016; 24(1):183-203. PubMed ID: 25700147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decomposition Algorithms for a Multi-Hard Problem.
    Przybylek MR; Wierzbicki A; Michalewicz Z
    Evol Comput; 2018; 26(3):507-533. PubMed ID: 28632397
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Analysis of the Fitness Landscape of Travelling Salesman Problem.
    Tayarani-N MH; PrĂ¼gel-Bennett A
    Evol Comput; 2016; 24(2):347-84. PubMed ID: 26066806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct Feature Evaluation in Black-Box Optimization Using Problem Transformations.
    Saleem S; Gallagher M; Wood I
    Evol Comput; 2019; 27(1):75-98. PubMed ID: 30592633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolving combinatorial problem instances that are difficult to solve.
    van Hemert JI
    Evol Comput; 2006; 14(4):433-62. PubMed ID: 17109606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simple Hyper-Heuristics Control the Neighbourhood Size of Randomised Local Search Optimally for LeadingOnes
    Lissovoi A; Oliveto PS; Warwicker JA
    Evol Comput; 2020; 28(3):437-461. PubMed ID: 31120773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binary salp swarm algorithm for discounted {0-1} knapsack problem.
    Dang BT; Truong TK
    PLoS One; 2022; 17(4):e0266537. PubMed ID: 35390109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expected Fitness Gains of Randomized Search Heuristics for the Traveling Salesperson Problem.
    Nallaperuma S; Neumann F; Sudholt D
    Evol Comput; 2017; 25(4):673-705. PubMed ID: 27893278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Motif difficulty (MD): a predictive measure of problem difficulty for evolutionary algorithms using network motifs.
    Liu J; Abbass HA; Green DG; Zhong W
    Evol Comput; 2012; 20(3):321-47. PubMed ID: 21815769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Empirical analysis of locality, heritability and heuristic bias in evolutionary algorithms: a case study for the multidimensional knapsack problem.
    Raidl GR; Gottlieb J
    Evol Comput; 2005; 13(4):441-75. PubMed ID: 16297279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.
    Smith JE
    Evol Comput; 2012; 20(2):165-88. PubMed ID: 22129225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast Polynomial Time Approximate Solution for 0-1 Knapsack Problem.
    Wang Z; Zhang H; Li Y
    Comput Intell Neurosci; 2022; 2022():1266529. PubMed ID: 36317076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is optimal solution of every NP-complete or NP-hard problem determined from its characteristic for DNA-based computing.
    Guo M; Chang WL; Ho M; Lu J; Cao J
    Biosystems; 2005 Apr; 80(1):71-82. PubMed ID: 15740836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An exact algorithm for the zero exemplar breakpoint distance problem.
    Zhu D; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1469-77. PubMed ID: 24407305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.