These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
488 related articles for article (PubMed ID: 30365485)
21. Convolutional neural network models of V1 responses to complex patterns. Zhang Y; Lee TS; Li M; Liu F; Tang S J Comput Neurosci; 2019 Feb; 46(1):33-54. PubMed ID: 29869761 [TBL] [Abstract][Full Text] [Related]
22. From photos to sketches - how humans and deep neural networks process objects across different levels of visual abstraction. Singer JJD; Seeliger K; Kietzmann TC; Hebart MN J Vis; 2022 Feb; 22(2):4. PubMed ID: 35129578 [TBL] [Abstract][Full Text] [Related]
23. Properties of shape tuning of macaque inferior temporal neurons examined using rapid serial visual presentation. De Baene W; Premereur E; Vogels R J Neurophysiol; 2007 Apr; 97(4):2900-16. PubMed ID: 17251368 [TBL] [Abstract][Full Text] [Related]
24. Multiple visual objects are represented differently in the human brain and convolutional neural networks. Mocz V; Jeong SK; Chun M; Xu Y Sci Rep; 2023 Jun; 13(1):9088. PubMed ID: 37277406 [TBL] [Abstract][Full Text] [Related]
25. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks. Le MH; Chen J; Wang L; Wang Z; Liu W; Cheng KT; Yang X Phys Med Biol; 2017 Jul; 62(16):6497-6514. PubMed ID: 28582269 [TBL] [Abstract][Full Text] [Related]
26. Local features and global shape information in object classification by deep convolutional neural networks. Baker N; Lu H; Erlikhman G; Kellman PJ Vision Res; 2020 Jul; 172():46-61. PubMed ID: 32413803 [TBL] [Abstract][Full Text] [Related]
27. Selectivity of inferior temporal neurons for realistic pictures predicted by algorithms for image database navigation. Allred S; Liu Y; Jagadeesh B J Neurophysiol; 2005 Dec; 94(6):4068-81. PubMed ID: 16120670 [TBL] [Abstract][Full Text] [Related]
28. Approximating the Architecture of Visual Cortex in a Convolutional Network. Tripp B Neural Comput; 2019 Aug; 31(8):1551-1591. PubMed ID: 31260392 [TBL] [Abstract][Full Text] [Related]
29. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Eo T; Jun Y; Kim T; Jang J; Lee HJ; Hwang D Magn Reson Med; 2018 Nov; 80(5):2188-2201. PubMed ID: 29624729 [TBL] [Abstract][Full Text] [Related]
30. Time-resolved correspondences between deep neural network layers and EEG measurements in object processing. Kong NCL; Kaneshiro B; Yamins DLK; Norcia AM Vision Res; 2020 Jul; 172():27-45. PubMed ID: 32388211 [TBL] [Abstract][Full Text] [Related]
31. Processing of shape defined by disparity in monkey inferior temporal cortex. Tanaka H; Uka T; Yoshiyama K; Kato M; Fujita I J Neurophysiol; 2001 Feb; 85(2):735-44. PubMed ID: 11160508 [TBL] [Abstract][Full Text] [Related]
32. The representation of Kanizsa illusory contours in the monkey inferior temporal cortex. Sáry G; Köteles K; Kaposvári P; Lenti L; Csifcsák G; Frankó E; Benedek G; Tompa T Eur J Neurosci; 2008 Nov; 28(10):2137-46. PubMed ID: 19046395 [TBL] [Abstract][Full Text] [Related]
33. Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. Kobatake E; Wang G; Tanaka K J Neurophysiol; 1998 Jul; 80(1):324-30. PubMed ID: 9658053 [TBL] [Abstract][Full Text] [Related]
34. Deep convolutional models improve predictions of macaque V1 responses to natural images. Cadena SA; Denfield GH; Walker EY; Gatys LA; Tolias AS; Bethge M; Ecker AS PLoS Comput Biol; 2019 Apr; 15(4):e1006897. PubMed ID: 31013278 [TBL] [Abstract][Full Text] [Related]
35. Inferotemporal neurons represent low-dimensional configurations of parameterized shapes. Op de Beeck H; Wagemans J; Vogels R Nat Neurosci; 2001 Dec; 4(12):1244-52. PubMed ID: 11713468 [TBL] [Abstract][Full Text] [Related]
36. Selectivity of macaque inferior temporal neurons for partially occluded shapes. Kovács G; Vogels R; Orban GA J Neurosci; 1995 Mar; 15(3 Pt 1):1984-97. PubMed ID: 7891146 [TBL] [Abstract][Full Text] [Related]
37. Exploring Deep Learning and Transfer Learning for Colonic Polyp Classification. Ribeiro E; Uhl A; Wimmer G; Häfner M Comput Math Methods Med; 2016; 2016():6584725. PubMed ID: 27847543 [TBL] [Abstract][Full Text] [Related]
38. Deep supervised, but not unsupervised, models may explain IT cortical representation. Khaligh-Razavi SM; Kriegeskorte N PLoS Comput Biol; 2014 Nov; 10(11):e1003915. PubMed ID: 25375136 [TBL] [Abstract][Full Text] [Related]
39. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images. Hu W; Zhang Y; Li L Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516 [TBL] [Abstract][Full Text] [Related]
40. Understanding transformation tolerant visual object representations in the human brain and convolutional neural networks. Xu Y; Vaziri-Pashkam M Neuroimage; 2022 Nov; 263():119635. PubMed ID: 36116617 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]