BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30365945)

  • 1. Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou's general PseAAC.
    Chen G; Cao M; Yu J; Guo X; Shi S
    J Theor Biol; 2019 Jan; 461():92-101. PubMed ID: 30365945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ProAcePred: prokaryote lysine acetylation sites prediction based on elastic net feature optimization.
    Chen G; Cao M; Luo K; Wang L; Wen P; Shi S
    Bioinformatics; 2018 Dec; 34(23):3999-4006. PubMed ID: 29868863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set.
    Wuyun Q; Zheng W; Zhang Y; Ruan J; Hu G
    PLoS One; 2016; 11(5):e0155370. PubMed ID: 27183223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. STALLION: a stacking-based ensemble learning framework for prokaryotic lysine acetylation site prediction.
    Basith S; Lee G; Manavalan B
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34532736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Position-specific analysis and prediction for protein lysine acetylation based on multiple features.
    Suo SB; Qiu JD; Shi SP; Sun XY; Huang SY; Chen X; Liang RP
    PLoS One; 2012; 7(11):e49108. PubMed ID: 23173045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome-wide identification of lysine propionylation in thermophilic and mesophilic bacteria: Geobacillus kaustophilus, Thermus thermophilus, Escherichia coli, Bacillus subtilis, and Rhodothermus marinus.
    Okanishi H; Kim K; Masui R; Kuramitsu S
    Extremophiles; 2017 Mar; 21(2):283-296. PubMed ID: 27928680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Prediction of Protein Epsilon Lysine Acetylation Sites Based on a Feature Selection Method.
    Gao J; Tao XW; Zhao J; Feng YM; Cai YD; Zhang N
    Comb Chem High Throughput Screen; 2017; 20(7):629-637. PubMed ID: 28292250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing Prediction and Functional Analysis of Prokaryotic Propionylation.
    Wang LN; Shi SP; Wen PP; Zhou ZY; Qiu JD
    J Chem Inf Model; 2017 Nov; 57(11):2896-2904. PubMed ID: 29059524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iCrotoK-PseAAC: Identify lysine crotonylation sites by blending position relative statistical features according to the Chou's 5-step rule.
    Malebary SJ; Rehman MSU; Khan YD
    PLoS One; 2019; 14(11):e0223993. PubMed ID: 31751380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational prediction of species-specific malonylation sites via enhanced characteristic strategy.
    Wang LN; Shi SP; Xu HD; Wen PP; Qiu JD
    Bioinformatics; 2017 May; 33(10):1457-1463. PubMed ID: 28025199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers.
    Xu Y; Wang XB; Ding J; Wu LY; Deng NY
    J Theor Biol; 2010 May; 264(1):130-5. PubMed ID: 20085770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fu-SulfPred: Identification of Protein S-sulfenylation Sites by Fusing Forests via Chou's General PseAAC.
    Wang L; Zhang R; Mu Y
    J Theor Biol; 2019 Jan; 461():51-58. PubMed ID: 30365947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile.
    Liu Y; Wang M; Xi J; Luo F; Li A
    Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate prediction of species-specific 2-hydroxyisobutyrylation sites based on machine learning frameworks.
    Wang YG; Huang SY; Wang LN; Zhou ZY; Qiu JD
    Anal Biochem; 2020 Aug; 602():113793. PubMed ID: 32473122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Oct; 77():200-204. PubMed ID: 28886434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning method to more accurately recall known lysine acetylation sites.
    Wu M; Yang Y; Wang H; Xu Y
    BMC Bioinformatics; 2019 Jan; 20(1):49. PubMed ID: 30674277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.