These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30365946)

  • 1. An energetic reformulation of kinetic rate laws enables scalable parameter estimation for biochemical networks.
    C Mason J; W Covert M
    J Theor Biol; 2019 Jan; 461():145-156. PubMed ID: 30365946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of elementary rate constants from global network analysis of E. coli central metabolism.
    Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M
    BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.
    Ismail AM; Mohamad MS; Abdul Majid H; Abas KH; Deris S; Zaki N; Mohd Hashim SZ; Ibrahim Z; Remli MA
    Biosystems; 2017 Dec; 162():81-89. PubMed ID: 28951204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A scalable method for parameter identification in kinetic models of metabolism using steady-state data.
    Srinivasan S; Cluett WR; Mahadevan R
    Bioinformatics; 2019 Dec; 35(24):5216-5225. PubMed ID: 31197317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translating biochemical network models between different kinetic formats.
    Hadlich F; Noack S; Wiechert W
    Metab Eng; 2009 Mar; 11(2):87-100. PubMed ID: 19013536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics.
    Nikerel IE; van Winden WA; van Gulik WM; Heijnen JJ
    BMC Bioinformatics; 2006 Dec; 7():540. PubMed ID: 17184531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration Strategies to Enhance Metabolic Ensemble Modeling Performance.
    Greene JL; Wäechter A; Tyo KEJ; Broadbelt LJ
    Biophys J; 2017 Sep; 113(5):1150-1162. PubMed ID: 28877496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of different algorithms for simultaneous estimation of multiple parameters in kinetic metabolic models.
    Baker SM; Schallau K; Junker BH
    J Integr Bioinform; 2010 Mar; 7(3):. PubMed ID: 20375457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-multiparameter sensitivity measure for robustness analysis of complex biochemical networks.
    Maeda K; Kurata H
    J Theor Biol; 2011 Mar; 272(1):174-86. PubMed ID: 21163268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models.
    Cotten C; Reed JL
    BMC Bioinformatics; 2013 Jan; 14():32. PubMed ID: 23360254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data.
    Liebermeister W; Klipp E
    Theor Biol Med Model; 2006 Dec; 3():42. PubMed ID: 17173670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameter estimation of dynamic biological network models using integrated fluxes.
    Liu Y; Gunawan R
    BMC Syst Biol; 2014 Nov; 8():127. PubMed ID: 25403239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved constraint filtering technique for inferring hidden states and parameters of a biological model.
    Murtuza Baker S; Poskar CH; Schreiber F; Junker BH
    Bioinformatics; 2013 Apr; 29(8):1052-9. PubMed ID: 23434837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints.
    Liebermeister W; Klipp E
    Theor Biol Med Model; 2006 Dec; 3():41. PubMed ID: 17173669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous versus sequential optimal experiment design for the identification of multi-parameter microbial growth kinetics as a function of temperature.
    Van Derlinden E; Bernaerts K; Van Impe JF
    J Theor Biol; 2010 May; 264(2):347-55. PubMed ID: 20064532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations.
    Costa RS; Machado D; Rocha I; Ferreira EC
    Biosystems; 2010 May; 100(2):150-7. PubMed ID: 20226228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.
    Tummler K; Lubitz T; Schelker M; Klipp E
    FEBS J; 2014 Jan; 281(2):549-71. PubMed ID: 24034816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incremental parameter estimation of kinetic metabolic network models.
    Jia G; Stephanopoulos G; Gunawan R
    BMC Syst Biol; 2012 Nov; 6():142. PubMed ID: 23171810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved differential evolution algorithm for enhancing biochemical pathways simulation and production.
    Chong CK; Mohamad MS; Deris S; Shamsir MS; Abdullah A
    Int J Data Min Bioinform; 2014; 10(4):424-39. PubMed ID: 25946887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of a core model for carbohydrate uptake in Escherichia coli.
    Kremling A; Flockerzi D
    J Theor Biol; 2012 Jun; 303():62-74. PubMed ID: 22763131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.