These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30366031)

  • 41. Spermine stimulation of a nuclear NII kinase from pea plumules and its role in the phosphorylation of a nuclear polypeptide.
    Datta N; Schell MB; Roux SJ
    Plant Physiol; 1987; 84(4):1397-401. PubMed ID: 11539678
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.
    Ferraro K; Jin AL; Nguyen TD; Reinecke DM; Ozga JA; Ro DK
    BMC Plant Biol; 2014 Sep; 14():238. PubMed ID: 25928382
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of nanosilver on the efficiency of Pisum sativum crops germination.
    Barabanov PV; Gerasimov AV; Blinov AV; Kravtsov AA; Kravtsov VA
    Ecotoxicol Environ Saf; 2018 Jan; 147():715-719. PubMed ID: 28942273
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transition-state analysis of nucleoside hydrolase from Crithidia fasciculata.
    Horenstein BA; Parkin DW; Estupiñán B; Schramm VL
    Biochemistry; 1991 Nov; 30(44):10788-95. PubMed ID: 1931998
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purification and characterization of novel ribosome inactivating proteins, alpha- and beta-pisavins, from seeds of the garden pea Pisum sativum.
    Lam SS; Wang H; Ng TB
    Biochem Biophys Res Commun; 1998 Dec; 253(1):135-42. PubMed ID: 9875233
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Purification and characterization of a fatty acyl-ester hydrolase from post-germinated sunflower seeds.
    Teissère M; Borel M; Caillol B; Nari J; Gardies AM; Noat G
    Biochim Biophys Acta; 1995 Mar; 1255(2):105-12. PubMed ID: 7696323
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Purine catabolism in plants : purification and some properties of inosine nucleosidase from yellow lupin (lupinus luteus L.) seeds.
    Guranowski A
    Plant Physiol; 1982 Aug; 70(2):344-9. PubMed ID: 16662492
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nucleoside diphosphate kinase from pea chloroplasts: purification, cDNA cloning and import into chloroplasts.
    Lübeck J; Soll J
    Planta; 1995; 196(4):668-73. PubMed ID: 7580854
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural explanation for the tunable substrate specificity of an E. coli nucleoside hydrolase: insights from molecular dynamics simulations.
    Lenz SAP; Wetmore SD
    J Comput Aided Mol Des; 2018 Dec; 32(12):1375-1388. PubMed ID: 30478756
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adenylate degradation in Escherichia coli. The role of AMP nucleosidase and properties of the purified enzyme.
    Leung HB; Schramm VL
    J Biol Chem; 1980 Nov; 255(22):10867-74. PubMed ID: 7000783
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adenosine 5'-tetraphosphate phosphohydrolase from yellow lupin seeds: purification to homogeneity and some properties.
    Guranowski A; Starzyńska E; Brown P; Blackburn GM
    Biochem J; 1997 Nov; 328 ( Pt 1)(Pt 1):257-62. PubMed ID: 9359862
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification and biochemical characterization of insoluble acid invertase (INAC-INV) from pea seedlings.
    Kim D; Lee G; Chang M; Park J; Chung Y; Lee S; Lee TK
    J Agric Food Chem; 2011 Oct; 59(20):11228-33. PubMed ID: 21923131
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recombinant protein purification from pea.
    Menkhaus TJ; Pate C; Krech A; Glatz CE
    Biotechnol Bioeng; 2004 Apr; 86(1):108-14. PubMed ID: 15007847
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Purification and characterization of acid phosphatase from yellow lupin (Lupinus luteus) seeds.
    Olczak M; Watorek W; Morawiecka B
    Biochim Biophys Acta; 1997 Aug; 1341(1):14-25. PubMed ID: 9300805
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protein function analysis of germinated Moringa oleifera seeds, and purification and characterization of their milk-clotting peptidase.
    Wang X; He L; Zhao Q; Chen H; Shi Y; Fan J; Chen Y; Huang A
    Int J Biol Macromol; 2021 Feb; 171():539-549. PubMed ID: 33434550
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A β-galactosidase from chick pea (Cicer arietinum) seeds: its purification, biochemical properties and industrial applications.
    Kishore D; Kayastha AM
    Food Chem; 2012 Sep; 134(2):1113-22. PubMed ID: 23107735
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Seed to seed variation of proteins of the yellow pea (Pisum sativum L.).
    Taghvaei M; Sadeghi R; Smith B
    PLoS One; 2022; 17(8):e0271887. PubMed ID: 35925911
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enzyme-substrate interactions in the purine-specific nucleoside hydrolase from Trypanosoma vivax.
    Versées W; Decanniere K; Van Holsbeke E; Devroede N; Steyaert J
    J Biol Chem; 2002 May; 277(18):15938-46. PubMed ID: 11854281
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PURINE AND PYRIMIDINE DERIVATIVES IN MATURE PEA SEEDS.
    BROWN EG
    Biochem J; 1963 Sep; 88(3):498-504. PubMed ID: 14071523
    [No Abstract]   [Full Text] [Related]  

  • 60. The auxin conjugate 1-O-indole-3-acetyl-beta-D-glucose is synthesized in immature legume seeds by IAGlc synthase and may be used for modification of some high molecular weight compounds.
    Jakubowska A; Kowalczyk S
    J Exp Bot; 2004 Apr; 55(398):791-801. PubMed ID: 14990619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.