These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3036617)

  • 21. Stimulation by dibutyryl cyclic AMP of serotonin synthesis and tryptophan transport in brain slices.
    Forn J; Tagliamonte A; Tagliamonte P; Gessa GL
    Nat New Biol; 1972 Jun; 237(77):245-7. PubMed ID: 4338791
    [No Abstract]   [Full Text] [Related]  

  • 22. Regulation of Ki-ras expression in Reuber H35 cells.
    Chan SO; Wong SS; Yeung DC
    Eur J Biochem; 1990 Nov; 193(3):681-5. PubMed ID: 2174364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucagon resistance of hepatoma cells. Evidence for receptor and post-receptor defects.
    Fehlmann M; Crettaz M; Kahn CR
    Biochem J; 1983 Sep; 214(3):845-50. PubMed ID: 6138031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of the synthesis of fatty-acid synthetase in rat liver by insulin, glucagon, and adenosine 3':5' cyclic monophosphate.
    Lakshmanan MR; Nepokroeff CM; Porter JW
    Proc Natl Acad Sci U S A; 1972 Dec; 69(12):3516-9. PubMed ID: 4345502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Induction of ornithine decarboxylase in Reuber H35 rat hepatoma cells.
    Byus CV; Wicks WD; Russel DH
    J Cyclic Nucleotide Res; 1976 Jul-AUG; 2(4):241-50. PubMed ID: 184123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hormonal regulation of incorporation of alanine-U-14C into glucose in human fetal liver explants. Effect of dibutyryl cyclic AMP, glucagon, insulin, and triamcinolone.
    Schwartz AL; Rall TW
    Diabetes; 1975 Jul; 24(7):650-7. PubMed ID: 169172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N6-(Phenylisopropyl)adenosine prevents glucagon both blocking insulin's activation of the plasma-membrane cyclic AMP phosphodiesterase and uncoupling hormonal stimulation of adenylate cyclase activity in hepatocytes.
    Wallace AV; Heyworth CM; Houslay MD
    Biochem J; 1984 Aug; 222(1):177-82. PubMed ID: 6089755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of cyclic AMP analogues and glucagon on cholesteryl ester synthesis and hydrolysis in cultured hamster hepatocytes.
    Hoang VQ; Suckling KE; Cho-Chung YS; Botham KM
    FEBS Lett; 1993 Aug; 329(1-2):17-20. PubMed ID: 8394829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimulatory and inhibitory effects of cyclic AMP on pancreatic glucagon release from monolayer cultures and the controlling role of calcium.
    Wollheim CB; Blondel B; Renold AE; Sharp GW
    Diabetologia; 1976 Jul; 12(3):269-77. PubMed ID: 182608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hormonal regulation of carbamoyl-phosphate synthetase I synthesis in primary cultured hepatocytes and Reuber hepatoma H-35. Defective regulation in hepatoma cells.
    Kitagawa Y
    Eur J Biochem; 1987 Aug; 167(1):19-25. PubMed ID: 3040399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of cyclic adenosine 3':5'-monophosphate-dependent protein kinase in H35 hepatoma and Chinese hamster ovary cells by a phorbol ester tumor promoter.
    Byus CV; Trevillyan JM; Cavit LJ; Fletcher WH
    Cancer Res; 1983 Jul; 43(7):3321-6. PubMed ID: 6303580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation by insulin of gluconeogenesis in isolated rat hepatocytes.
    Claus TH; Pilkis SJ
    Biochim Biophys Acta; 1976 Feb; 421(2):246-62. PubMed ID: 175843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hormonal regulation of concentrative nucleoside transport in liver parenchymal cells.
    Gomez-Angelats M; del Santo B; Mercader J; Ferrer-Martinez A; Felipe A; Casado J; Pastor-Anglada M
    Biochem J; 1996 Feb; 313 ( Pt 3)(Pt 3):915-20. PubMed ID: 8611175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on the effects of hormones on cholesterol synthesis in mammalian cells in culture.
    Avigan J
    Expos Annu Biochim Med; 1977; 33():1-11. PubMed ID: 196905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclic adenosine 3':5'-monophosphate-mediated insulin secretion and ribosomal protein phosphorylation in a hamster islet cell tumor.
    Schubart UK; Shapiro S; Fleischer N; Rosen OM
    J Biol Chem; 1977 Jan; 252(1):92-101. PubMed ID: 188814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding of cyclic nucleotides with proteins in malignant and adenosine cyclic 3':5'-monophosphate-induced "differentiated" neuroblastoma cells in culture.
    Prasad KN; Sinha PK; Sahu SK; Brown JL
    Cancer Res; 1976 Jul; 36(7 PT 1):2290-6. PubMed ID: 179701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Positive and negative cAMP-mediated control of tyrosine aminotransferase synthesis in Reuber H35 hepatoma cells.
    Snoek GT; Voorma HO; van Wijk R
    Eur J Biochem; 1982 Mar; 123(1):217-22. PubMed ID: 6121706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of heparan sulphate metabolism by adenosine 3':5'-cyclic monophosphate in hepatocytes in culture.
    Sudhakaran PR; Sinn W; von Figura K
    Biochem J; 1980 Nov; 192(2):395-402. PubMed ID: 6263252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amino acid transport and turnover of a transport system in liver slices from rats treated with glucagon and antibiotics.
    Tews JK; Colosi NW; Harpter AE
    Life Sci; 1975 Mar; 16(5):439-49. PubMed ID: 164597
    [No Abstract]   [Full Text] [Related]  

  • 40. Metabolic control mechanisms in mammalian systems. XV. Studies on the role of adenosine 3' ,5'-monophosphate in estrogen action on the uterus.
    Singhal RL; Lafreniere RT
    J Pharmacol Exp Ther; 1972 Jan; 180(1):86-97. PubMed ID: 4110809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.