These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 30366282)
1. Rainfall time series disaggregation in mountainous regions using hybrid wavelet-artificial intelligence methods. Nourani V; Farboudfam N Environ Res; 2019 Jan; 168():306-318. PubMed ID: 30366282 [TBL] [Abstract][Full Text] [Related]
2. Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process. Komasi M; Sharghi S Water Sci Technol; 2016; 73(8):1937-53. PubMed ID: 27120649 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of an artificial neural network rainfall disaggregation model. Burian SJ; Durran SR Water Sci Technol; 2002; 45(2):99-104. PubMed ID: 11888188 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model. Ravansalar M; Rajaee T Environ Monit Assess; 2015 Jun; 187(6):366. PubMed ID: 25990827 [TBL] [Abstract][Full Text] [Related]
5. Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers. Rajaee T Sci Total Environ; 2011 Jul; 409(15):2917-28. PubMed ID: 21546062 [TBL] [Abstract][Full Text] [Related]
6. Groundwater level response identification by hybrid wavelet-machine learning conjunction models using meteorological data. Samani S; Vadiati M; Nejatijahromi Z; Etebari B; Kisi O Environ Sci Pollut Res Int; 2023 Feb; 30(9):22863-22884. PubMed ID: 36308648 [TBL] [Abstract][Full Text] [Related]
7. Predicting river dissolved oxygen time series based on stand-alone models and hybrid wavelet-based models. Xu C; Chen X; Zhang L J Environ Manage; 2021 Oct; 295():113085. PubMed ID: 34147993 [TBL] [Abstract][Full Text] [Related]
8. Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid, uric acid, dopamine and nitrite: application of non-bilinear voltammetric data for exploiting first-order advantage. Gholivand MB; Jalalvand AR; Goicoechea HC; Skov T Talanta; 2014 Feb; 119():553-63. PubMed ID: 24401455 [TBL] [Abstract][Full Text] [Related]
9. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions. Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854 [TBL] [Abstract][Full Text] [Related]
10. The assessment of emerging data-intelligence technologies for modeling Mg Jamei M; Ahmadianfar I; Karbasi M; Jawad AH; Farooque AA; Yaseen ZM J Environ Manage; 2021 Dec; 300():113774. PubMed ID: 34560461 [TBL] [Abstract][Full Text] [Related]
11. Comparison of CML Rainfall Data against Rain Gauges and Disdrometers in a Mountainous Environment. Nebuloni R; Cazzaniga G; D'Amico M; Deidda C; De Michele C Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590908 [TBL] [Abstract][Full Text] [Related]
12. Application of wavelet theory to enhance the performance of machine learning techniques in estimating water quality parameters (case study: Gao-Ping River). Chen TC Water Sci Technol; 2023 Mar; 87(5):1294-1315. PubMed ID: 36919749 [TBL] [Abstract][Full Text] [Related]
13. Forecasting riverine total nitrogen loads using wavelet analysis and support vector regression combination model in an agricultural watershed. Ji X; Lu J Environ Sci Pollut Res Int; 2018 Sep; 25(26):26405-26422. PubMed ID: 29982944 [TBL] [Abstract][Full Text] [Related]
14. Simulating daily PM Guo Q; He Z; Wang Z Chemosphere; 2023 Nov; 340():139886. PubMed ID: 37611770 [TBL] [Abstract][Full Text] [Related]
15. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States. Olyaie E; Banejad H; Chau KW; Melesse AM Environ Monit Assess; 2015 Apr; 187(4):189. PubMed ID: 25787167 [TBL] [Abstract][Full Text] [Related]
16. Least square support vector machine-based variational mode decomposition: a new hybrid model for daily river water temperature modeling. Heddam S; Ptak M; Sojka M; Kim S; Malik A; Kisi O; Zounemat-Kermani M Environ Sci Pollut Res Int; 2022 Oct; 29(47):71555-71582. PubMed ID: 35604598 [TBL] [Abstract][Full Text] [Related]
17. Effect of rain gauge density over the accuracy of rainfall: a case study over Bangalore, India. Mishra AK Springerplus; 2013 Dec; 2(1):311. PubMed ID: 23888280 [TBL] [Abstract][Full Text] [Related]
18. Enhancing rainfall-runoff model accuracy with machine learning models by using soil water index to reflect runoff characteristics. Iamampai S; Talaluxmana Y; Kanasut J; Rangsiwanichpong P Water Sci Technol; 2024 Jan; 89(2):368-381. PubMed ID: 39219136 [TBL] [Abstract][Full Text] [Related]
19. Potential impacts of climate change on groundwater level through hybrid soft-computing methods: a case study-Shabestar Plain, Iran. Jeihouni E; Mohammadi M; Eslamian S; Zareian MJ Environ Monit Assess; 2019 Sep; 191(10):620. PubMed ID: 31493149 [TBL] [Abstract][Full Text] [Related]
20. Multivariate modeling of pan evaporation in monthly temporal resolution using a hybrid evolutionary data-driven method (case study: Urmia Lake and Gavkhouni basins). Emadi A; Zamanzad-Ghavidel S; Fazeli S; Zarei S; Rashid-Niaghi A Environ Monit Assess; 2021 May; 193(6):355. PubMed ID: 34028631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]