These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 30366367)
21. Anticancer activity of paclitaxel-loaded keratin nanoparticles in two-dimensional and perfused three-dimensional breast cancer models. Foglietta F; Spagnoli GC; Muraro MG; Ballestri M; Guerrini A; Ferroni C; Aluigi A; Sotgiu G; Varchi G Int J Nanomedicine; 2018; 13():4847-4867. PubMed ID: 30214193 [TBL] [Abstract][Full Text] [Related]
22. Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles. Feng Q; Yu MZ; Wang JC; Hou WJ; Gao LY; Ma XF; Pei XW; Niu YJ; Liu XY; Qiu C; Pang WH; Du LL; Zhang Q Biomaterials; 2014 Jun; 35(18):5028-38. PubMed ID: 24680191 [TBL] [Abstract][Full Text] [Related]
23. Exploring the synergistic behavior of paclitaxel and vorinostat upon co-loading in albumin nanoparticles for breast cancer management. Abhang A; Katari O; Ghadi R; Chaudhari D; Jain S Drug Deliv Transl Res; 2024 Feb; 14(2):510-523. PubMed ID: 37605040 [TBL] [Abstract][Full Text] [Related]
24. Enhanced antitumor efficacy of vitamin E TPGS-emulsified PLGA nanoparticles for delivery of paclitaxel. Sun Y; Yu B; Wang G; Wu Y; Zhang X; Chen Y; Tang S; Yuan Y; Lee RJ; Teng L; Xu S Colloids Surf B Biointerfaces; 2014 Nov; 123():716-23. PubMed ID: 25456995 [TBL] [Abstract][Full Text] [Related]
25. Redox-sensitive carrier-free nanoparticles self-assembled by disulfide-linked paclitaxel-tetramethylpyrazine conjugate for combination cancer chemotherapy. Zou L; Liu X; Li J; Li W; Zhang L; Fu C; Zhang J; Gu Z Theranostics; 2021; 11(9):4171-4186. PubMed ID: 33754055 [No Abstract] [Full Text] [Related]
26. Tannic acid-inspired paclitaxel nanoparticles for enhanced anticancer effects in breast cancer cells. Chowdhury P; Nagesh PKB; Hatami E; Wagh S; Dan N; Tripathi MK; Khan S; Hafeez BB; Meibohm B; Chauhan SC; Jaggi M; Yallapu MM J Colloid Interface Sci; 2019 Feb; 535():133-148. PubMed ID: 30292104 [TBL] [Abstract][Full Text] [Related]
27. Hyaluronic acid decorated pluronic P85 solid lipid nanoparticles as a potential carrier to overcome multidrug resistance in cervical and breast cancer. Wang F; Li L; Liu B; Chen Z; Li C Biomed Pharmacother; 2017 Feb; 86():595-604. PubMed ID: 28027535 [TBL] [Abstract][Full Text] [Related]
28. Development of paclitaxel loaded pegylated gelatin targeted nanoparticles for improved treatment efficacy in non-small cell lung cancer (NSCLC): an in vitro and in vivo evaluation study. Gu M; Luan J; Song K; Qiu C; Zhang X; Zhang M Acta Biochim Pol; 2021 Aug; 68(4):583-591. PubMed ID: 34355554 [TBL] [Abstract][Full Text] [Related]
29. Paclitaxel loaded fibrinogen coated CdTe/ZnTe core shell nanoparticles for targeted imaging and drug delivery to breast cancer cells. Rejinold NS; Baby T; Nair SV; Jayakumar R J Biomed Nanotechnol; 2013 Oct; 9(10):1657-71. PubMed ID: 24015495 [TBL] [Abstract][Full Text] [Related]
31. Synergistic breast tumor cell killing achieved by intracellular co-delivery of doxorubicin and disulfiram via core-shell-corona nanoparticles. Tao X; Gou J; Zhang Q; Tan X; Ren T; Yao Q; Tian B; Kou L; Zhang L; Tang X Biomater Sci; 2018 Jun; 6(7):1869-1881. PubMed ID: 29808221 [TBL] [Abstract][Full Text] [Related]
32. Development of redox-responsive theranostic nanoparticles for near-infrared fluorescence imaging-guided photodynamic/chemotherapy of tumor. Yang X; Shi X; Ji J; Zhai G Drug Deliv; 2018 Nov; 25(1):780-796. PubMed ID: 29542333 [TBL] [Abstract][Full Text] [Related]
33. Biomimetic Shells Endow Sub-50 nm Nanoparticles with Ultrahigh Paclitaxel Payloads for Specific and Robust Chemotherapy. Chen X; Ling X; Zhao L; Xiong F; Hollett G; Kang Y; Barrett A; Wu J ACS Appl Mater Interfaces; 2018 Oct; 10(40):33976-33985. PubMed ID: 30203956 [TBL] [Abstract][Full Text] [Related]
34. A reconstituted thermosensitive hydrogel system based on paclitaxel-loaded amphiphilic copolymer nanoparticles and antitumor efficacy. Liang Y; Dong C; Zhang J; Deng L; Dong A Drug Dev Ind Pharm; 2017 Jun; 43(6):972-979. PubMed ID: 28121206 [TBL] [Abstract][Full Text] [Related]
35. Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition. Meng L; Xia X; Yang Y; Ye J; Dong W; Ma P; Jin Y; Liu Y Int J Pharm; 2016 Nov; 513(1-2):8-16. PubMed ID: 27596118 [TBL] [Abstract][Full Text] [Related]
36. Pterostilbene nanoparticles with small particle size show excellent anti-breast cancer activity Zou Y; Wang X; Bi D; Fu J; Han J; Guo Y; Feng L; Han M Nanotechnology; 2021 May; 32(32):. PubMed ID: 33946061 [TBL] [Abstract][Full Text] [Related]
37. Enhanced anticancer activity and intracellular uptake of paclitaxel-containing solid lipid nanoparticles in multidrug-resistant breast cancer cells. Xu W; Bae EJ; Lee MK Int J Nanomedicine; 2018; 13():7549-7563. PubMed ID: 30532538 [TBL] [Abstract][Full Text] [Related]
38. Immunotherapeutic vitamin E nanoemulsion synergies the antiproliferative activity of paclitaxel in breast cancer cells via modulating Th1 and Th2 immune response. Pawar VK; Panchal SB; Singh Y; Meher JG; Sharma K; Singh P; Bora HK; Singh A; Datta D; Chourasia MK J Control Release; 2014 Dec; 196():295-306. PubMed ID: 25459427 [TBL] [Abstract][Full Text] [Related]
39. Improving antitumor outcomes for palliative intratumoral injection therapy through lecithin- chitosan nanoparticles loading paclitaxel- cholesterol complex. Chu XY; Huang W; Wang YL; Meng LW; Chen LQ; Jin MJ; Chen L; Gao CH; Ge C; Gao ZG; Gao CS Int J Nanomedicine; 2019; 14():689-705. PubMed ID: 30774330 [TBL] [Abstract][Full Text] [Related]
40. Chemosensitizing indomethacin-conjugated dextran-based micelles for effective delivery of paclitaxel in resistant breast cancer therapy. Ji W; Wang B; Fan Q; Xu C; He Y; Chen Y PLoS One; 2017; 12(7):e0180037. PubMed ID: 28686704 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]