These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30366411)

  • 1. Electrochemically Treated TiO₂ for Enhanced Performance in Aqueous Al-Ion Batteries.
    Holland A; McKerracher R; Cruden A; Wills R
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30366411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of One-Dimensional Mesoporous Ag Nanoparticles-Modified TiO
    Zhang Y; Li J; Li W; Kang D
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31426615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Lithium Ion Storage by Titanium Dioxide Addition to Zinc Telluride-Based Alloy Composites.
    Nguyen QH; So S; Hur J
    J Nanosci Nanotechnol; 2020 Nov; 20(11):6815-6820. PubMed ID: 32604519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-in-Salt Electrolyte-Based Extended Voltage Range, Safe, and Long-Cycle-Life Aqueous Calcium-Ion Cells.
    Adil M; Ghosh A; Mitra S
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25501-25515. PubMed ID: 35637172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes.
    Kaushik S; Matsumoto K; Hagiwara R
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10891-10901. PubMed ID: 33630586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance.
    Beuvier T; Richard-Plouet M; Mancini-Le Granvalet M; Brousse T; Crosnier O; Brohan L
    Inorg Chem; 2010 Sep; 49(18):8457-64. PubMed ID: 20722375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of anatase TiO(2) quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries.
    Mo R; Lei Z; Sun K; Rooney D
    Adv Mater; 2014 Apr; 26(13):2084-8. PubMed ID: 24347361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Facile Synthesis of MoS
    Tran Huu H; Nguyen Thi XD; Nguyen Van K; Kim SJ; Vo V
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31141944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-mediated layer-by-layer synthesis of TiO₂(B)/anatase/carbon coating on nickel foam as negative electrode material for lithium-ion battery.
    Wang X; Yan Y; Hao B; Chen G
    ACS Appl Mater Interfaces; 2013 May; 5(9):3631-7. PubMed ID: 23597025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance MnO
    Pan W; Mao J; Wang Y; Zhao X; Leong KW; Luo S; Chen Y; Leung DYC
    Small Methods; 2021 Sep; 5(9):e2100491. PubMed ID: 34928058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries.
    Shim HW; Lee DK; Cho IS; Hong KS; Kim DW
    Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanosized and metastable molybdenum oxides as negative electrode materials for durable high-energy aqueous Li-ion batteries.
    Yun J; Sagehashi R; Sato Y; Masuda T; Hoshino S; Rajendra HB; Okuno K; Hosoe A; Bandarenka AS; Yabuuchi N
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34815337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GaP-TiO₂-C Nanocomposite as High-Performance Sodium-Ion Batteries Anode.
    Huy VPH; Hur J
    J Nanosci Nanotechnol; 2021 Jul; 21(7):3897-3902. PubMed ID: 33715713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoporous TiO₂ spheres interconnected by multiwalled carbon nanotubes as an anode for high-performance lithium ion batteries.
    Trang NT; Ali Z; Kang DJ
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3676-83. PubMed ID: 25633801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step hydrothermal synthesis of mesoporous anatase TiO₂ microsphere and interfacial control for enhanced lithium storage performance.
    Lee KH; Song SW
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3697-703. PubMed ID: 21848346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Practical Aqueous Calcium-Ion Battery Full-Cells for Future Stationary Storage.
    Adil M; Sarkar A; Roy A; Panda MR; Nagendra A; Mitra S
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11489-11503. PubMed ID: 32073827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of SiO
    Li W; Wang F; Ma M; Zhou J; Liu Y; Chen Y
    RSC Adv; 2018 Sep; 8(59):33652-33658. PubMed ID: 35548784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na Superionic Conductor-Type TiNb(PO
    Zhang J; Chen L; Niu L; Jiang P; Shao G; Liu Z
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39757-39764. PubMed ID: 31584258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Rate Aqueous Aluminum-Ion Batteries Enabled by Confined Iodine Conversion Chemistry.
    Yang S; Li C; Lv H; Guo X; Wang Y; Han C; Zhi C; Li H
    Small Methods; 2021 Oct; 5(10):e2100611. PubMed ID: 34927954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemically stable tunnel-type α-MnO
    De Luna Y; Alsulaiti A; Ahmad MI; Nimir H; Bensalah N
    Front Chem; 2023; 11():1101459. PubMed ID: 36762193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.