BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 30366497)

  • 1. Efficient and Orthogonal Transcription Regulation by Chemically Inducible Artificial Transcription Factors.
    Nomura W; Matsumoto D; Sugii T; Kobayakawa T; Tamamura H
    Biochemistry; 2018 Nov; 57(45):6452-6459. PubMed ID: 30366497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioorthogonal Chemical Epigenetic Modifiers Enable Dose-Dependent CRISPR Targeted Gene Activation in Mammalian Cells.
    Lu D; Foley CA; Birla SV; Hepperla AJ; Simon JM; James LI; Hathaway NA
    ACS Synth Biol; 2022 Apr; 11(4):1397-1407. PubMed ID: 35302756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TALEN-Based Chemically Inducible, Dimerization-Dependent, Sequence-Specific Nucleases.
    Matsumoto D; Tamamura H; Nomura W
    Biochemistry; 2020 Jan; 59(2):197-204. PubMed ID: 31603654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong gene activation in plants with genome-wide specificity using a new orthogonal CRISPR/Cas9-based programmable transcriptional activator.
    Selma S; Bernabé-Orts JM; Vazquez-Vilar M; Diego-Martin B; Ajenjo M; Garcia-Carpintero V; Granell A; Orzaez D
    Plant Biotechnol J; 2019 Sep; 17(9):1703-1705. PubMed ID: 31034138
    [No Abstract]   [Full Text] [Related]  

  • 5. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.
    Inobe T; Nukina N
    J Biosci Bioeng; 2016 Jul; 122(1):40-6. PubMed ID: 26777239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system.
    Garcia-Bloj B; Moses C; Sgro A; Plani-Lam J; Arooj M; Duffy C; Thiruvengadam S; Sorolla A; Rashwan R; Mancera RL; Leisewitz A; Swift-Scanlan T; Corvalan AH; Blancafort P
    Oncotarget; 2016 Sep; 7(37):60535-60554. PubMed ID: 27528034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel luciferase knock-in reporter system for studying transcriptional regulation of the human Sox2 gene.
    Xiao D; Zhang W; Li Y; Liu K; Zhao J; Sun X; Shan L; Mao Q; Xia H
    J Biotechnol; 2016 Feb; 219():110-6. PubMed ID: 26721181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals.
    Luker KE; Smith MC; Luker GD; Gammon ST; Piwnica-Worms H; Piwnica-Worms D
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12288-93. PubMed ID: 15284440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An inducible system for in vitro and in vivo Fas activation using FKBP-FRB-rapamycin complex.
    Kim S; Shin J; Oh H; Ahn S; Kim N; Heo WD
    Biochem Biophys Res Commun; 2020 Mar; 523(2):473-480. PubMed ID: 31882118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration and exchange of split dCas9 domains for transcriptional controls in mammalian cells.
    Ma D; Peng S; Xie Z
    Nat Commun; 2016 Oct; 7():13056. PubMed ID: 27694915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the Chemogenetic Toolbox by Circular Permutation.
    Lee YT; He L; Zhou Y
    J Mol Biol; 2020 May; 432(10):3127-3136. PubMed ID: 32277990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems.
    Lowder LG; Zhou J; Zhang Y; Malzahn A; Zhong Z; Hsieh TF; Voytas DF; Zhang Y; Qi Y
    Mol Plant; 2018 Feb; 11(2):245-256. PubMed ID: 29197638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cis-trans Engineering: Advances and Perspectives on Customized Transcriptional Regulation in Plants.
    Shrestha A; Khan A; Dey N
    Mol Plant; 2018 Jul; 11(7):886-898. PubMed ID: 29859265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically induced and light-independent cryptochrome photoreceptor activation.
    Rosenfeldt G; Viana RM; Mootz HD; von Arnim AG; Batschauer A
    Mol Plant; 2008 Jan; 1(1):4-14. PubMed ID: 20031911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and reversible epigenome editing by endogenous chromatin regulators.
    Braun SMG; Kirkland JG; Chory EJ; Husmann D; Calarco JP; Crabtree GR
    Nat Commun; 2017 Sep; 8(1):560. PubMed ID: 28916764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted genome regulation via synthetic programmable transcriptional regulators.
    Piatek A; Mahfouz MM
    Crit Rev Biotechnol; 2017 Jun; 37(4):429-440. PubMed ID: 27093352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional dissections between GAMYB and Dof transcription factors suggest a role for protein-protein associations in the gibberellin-mediated expression of the RAmy1A gene in the rice aleurone.
    Washio K
    Plant Physiol; 2003 Oct; 133(2):850-63. PubMed ID: 14500792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research.
    Fujita T; Fujii H
    Int J Mol Sci; 2015 Sep; 16(10):23143-64. PubMed ID: 26404236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.