BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30366536)

  • 1. Performances comparison of enantiomeric separation materials prepared from shrimp and crab shells.
    Yang F; Cai ML; Chen W; Bai ZW
    Carbohydr Polym; 2019 Jan; 204():238-246. PubMed ID: 30366536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison in enantioseparation performance of chiral stationary phases prepared from chitosans of different sources and molecular weights.
    Zhang GH; Xi JB; Chen W; Bai ZW
    J Chromatogr A; 2020 Jun; 1621():461029. PubMed ID: 32192704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance comparison of chiral separation materials derived from N-cyclohexylcarbonyl and N-hexanoyl chitosans.
    Tang S; Liu JD; Chen W; Huang SH; Zhang J; Bai ZW
    J Chromatogr A; 2018 Jan; 1532():112-123. PubMed ID: 29246422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural dependence on the property of chiral stationary phases derived from chitosan bis(arylcarbamate)-(amide)s.
    Feng ZW; Qiu GS; Mei XM; Liang S; Yang F; Huang SH; Chen W; Bai ZW
    Carbohydr Polym; 2017 Jul; 168():301-309. PubMed ID: 28457453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance chiral stationary phases based on chitosan derivatives with a branched-chain alkyl urea.
    Liang S; Huang SH; Chen W; Bai ZW
    Anal Chim Acta; 2017 Sep; 985():183-193. PubMed ID: 28864189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High performance chiral separation materials based on chitosan bis(3,5-dimethylphenylcarbamate)-(alkyl urea)s.
    Wang J; Xi JB; Chen W; Huang SH; Bai ZW
    Carbohydr Polym; 2017 Jan; 156():481-489. PubMed ID: 27842849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of substituted phenylcarbamates of N-cyclobutylformylated chitosan and their application as chiral selectors in enantioseparation.
    Zhang J; Wang XC; Chen W; Bai ZW
    Analyst; 2016 Jul; 141(14):4470-80. PubMed ID: 27191623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eluent Tolerance and Enantioseparation Recovery of Chiral Packing Materials Based on Chitosan Bis(Phenylcarbamate)-(n-Octyl Urea)s for High Performance Liquid Chromatography.
    Wang J; Huang SH; Chen W; Bai ZW
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27845761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure screening and performance restoration of chiral separation materials based on chitosan derivatives.
    Zhang GH; Fu KQ; Xi JB; Chen W; Tang S; Bai ZW
    Carbohydr Polym; 2019 Jun; 214():259-268. PubMed ID: 30925995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-performance chiral selector derived from chitosan (p-methylbenzylurea) for efficient enantiomer separation.
    Tang S; Mei X; Chen W; Huang SH; Bai ZW
    Talanta; 2018 Aug; 185():42-52. PubMed ID: 29759222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-Acylated chitosan bis(arylcarbamate)s: A class of promising chiral separation materials with powerful enantioseparation capability and high eluents tolerability.
    Tang S; Liu JD; Bin Q; Fu KQ; Wang XC; Luo YB; Huang SH; Bai ZW
    J Chromatogr A; 2016 Dec; 1476():53-62. PubMed ID: 27863711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells.
    Kumari S; Kumar Annamareddy SH; Abanti S; Kumar Rath P
    Int J Biol Macromol; 2017 Nov; 104(Pt B):1697-1705. PubMed ID: 28472681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral stationary phases based on chitosan bis(4-methylphenylcarbamate)-(alkoxyformamide).
    Feng ZW; Chen W; Bai ZW
    J Sep Sci; 2016 Oct; 39(19):3728-3735. PubMed ID: 27514503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interactions between chiral analytes and chitosan-based chiral stationary phases during enantioseparation.
    Chen W; Jiang JZ; Qiu GS; Tang S; Bai ZW
    J Chromatogr A; 2021 Aug; 1650():462259. PubMed ID: 34090134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and Enantioseparation of Biselector Chiral Stationary Phases Based on Amylose and Chitin Derivatives.
    Zhang J; Wang ZQ; Chen W; Bai ZW
    Anal Sci; 2015; 31(10):1091-7. PubMed ID: 26460376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioseparation characteristics of the chiral stationary phases based on natural and regenerated chitins.
    Mei XM; Chen W; Bai ZW
    J Sep Sci; 2017 Apr; 40(8):1710-1717. PubMed ID: 28225215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioseparation of selected chiral sulfoxides in high-performance liquid chromatography with polysaccharide-based chiral selectors in polar organic mobile phases with emphasis on enantiomer elution order.
    Gegenava M; Chankvetadze L; Farkas T; Chankvetadze B
    J Sep Sci; 2014 May; 37(9-10):1083-8. PubMed ID: 24634398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirements in structure for chiral recognition of chitosan derivatives.
    Gao YY; Chen W; Bai ZW
    J Chromatogr A; 2023 Feb; 1690():463783. PubMed ID: 36657297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioseparation using urea- and imide-bearing chitosan phenylcarbamate derivatives as chiral stationary phases for high-performance liquid chromatography.
    Yamamoto C; Fujisawa M; Kamigaito M; Okamoto Y
    Chirality; 2008 Mar; 20(3-4):288-94. PubMed ID: 17597117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically versus thermally processed brown shrimp shells or Chinese mitten crab as a source of chitin, nutrients or salts and as microbial stimulant in soilless strawberry cultivation.
    Vandecasteele B; Amery F; Ommeslag S; Vanhoutte K; Visser R; Robbens J; De Tender C; Debode J
    Sci Total Environ; 2021 Jun; 771():145263. PubMed ID: 33545468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.