These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30366627)

  • 1. Rigid Basepair Monte Carlo Simulations of One-Start and Two-Start Chromatin Fiber Unfolding by Force.
    de Jong BE; Brouwer TB; Kaczmarczyk A; Visscher B; van Noort J
    Biophys J; 2018 Nov; 115(10):1848-1859. PubMed ID: 30366627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical role for linker DNA in higher-order folding of chromatin fibers.
    Brouwer T; Pham C; Kaczmarczyk A; de Voogd WJ; Botto M; Vizjak P; Mueller-Planitz F; van Noort J
    Nucleic Acids Res; 2021 Mar; 49(5):2537-2551. PubMed ID: 33589918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force spectroscopy of chromatin fibers: extracting energetics and structural information from Monte Carlo simulations.
    Kepper N; Ettig R; Stehr R; Marnach S; Wedemann G; Rippe K
    Biopolymers; 2011 Jul; 95(7):435-47. PubMed ID: 21294108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of Chromatin Fibers: Comparison of Monte Carlo Simulations with Force Spectroscopy.
    Norouzi D; Zhurkin VB
    Biophys J; 2018 Nov; 115(9):1644-1655. PubMed ID: 30236784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulation of the 30-nanometer chromatin fiber.
    Wedemann G; Langowski J
    Biophys J; 2002 Jun; 82(6):2847-59. PubMed ID: 12023209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changing chromatin fiber conformation by nucleosome repositioning.
    Müller O; Kepper N; Schöpflin R; Ettig R; Rippe K; Wedemann G
    Biophys J; 2014 Nov; 107(9):2141-50. PubMed ID: 25418099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber.
    Kruithof M; Chien FT; Routh A; Logie C; Rhodes D; van Noort J
    Nat Struct Mol Biol; 2009 May; 16(5):534-40. PubMed ID: 19377481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers.
    Meng H; Andresen K; van Noort J
    Nucleic Acids Res; 2015 Apr; 43(7):3578-90. PubMed ID: 25779043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of nucleosome unwrapping within chromatin fibers using magnetic tweezers.
    Chien FT; van der Heijden T
    Biophys J; 2014 Jul; 107(2):373-383. PubMed ID: 25028879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-molecule force spectroscopy on histone H4 tail-cross-linked chromatin reveals fiber folding.
    Kaczmarczyk A; Allahverdi A; Brouwer TB; Nordenskiöld L; Dekker NH; van Noort J
    J Biol Chem; 2017 Oct; 292(42):17506-17513. PubMed ID: 28855255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation.
    Kepper N; Foethke D; Stehr R; Wedemann G; Rippe K
    Biophys J; 2008 Oct; 95(8):3692-705. PubMed ID: 18212006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of chromatin folding by conformational variations of nucleosome linker DNA.
    Buckwalter JM; Norouzi D; Harutyunyan A; Zhurkin VB; Grigoryev SA
    Nucleic Acids Res; 2017 Sep; 45(16):9372-9387. PubMed ID: 28934465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions.
    Grigoryev SA; Arya G; Correll S; Woodcock CL; Schlick T
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13317-22. PubMed ID: 19651606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous access to DNA target sites in folded chromatin fibers.
    Poirier MG; Bussiek M; Langowski J; Widom J
    J Mol Biol; 2008 Jun; 379(4):772-86. PubMed ID: 18485363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulling chromatin fibers: computer simulations of direct physical micromanipulations.
    Katritch V; Bustamante C; Olson WK
    J Mol Biol; 2000 Jan; 295(1):29-40. PubMed ID: 10623506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling studies of chromatin fiber structure as a function of DNA linker length.
    Perišić O; Collepardo-Guevara R; Schlick T
    J Mol Biol; 2010 Nov; 403(5):777-802. PubMed ID: 20709077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure.
    Robinson PJ; Fairall L; Huynh VA; Rhodes D
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6506-11. PubMed ID: 16617109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depletion effects massively change chromatin properties and influence genome folding.
    Diesinger PM; Heermann DW
    Biophys J; 2009 Oct; 97(8):2146-53. PubMed ID: 19843447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleosome interactions in chromatin: fiber stiffening and hairpin formation.
    Mergell B; Everaers R; Schiessel H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011915. PubMed ID: 15324096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation of chromatin stretching.
    Aumann F; Lankas F; Caudron M; Langowski J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041927. PubMed ID: 16711856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.