These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 30366654)
1. Role of Clinical and Imaging Risk Factors in Predicting Breast Cancer Diagnosis Among BI-RADS 4 Cases. Hsu W; Zhou X; Petruse A; Chau N; Lee-Felker S; Hoyt A; Wenger N; Elashoff D; Naeim A Clin Breast Cancer; 2019 Feb; 19(1):e142-e151. PubMed ID: 30366654 [TBL] [Abstract][Full Text] [Related]
2. Automated and Clinical Breast Imaging Reporting and Data System Density Measures Predict Risk for Screen-Detected and Interval Cancers: A Case-Control Study. Kerlikowske K; Scott CG; Mahmoudzadeh AP; Ma L; Winham S; Jensen MR; Wu FF; Malkov S; Pankratz VS; Cummings SR; Shepherd JA; Brandt KR; Miglioretti DL; Vachon CM Ann Intern Med; 2018 Jun; 168(11):757-765. PubMed ID: 29710124 [TBL] [Abstract][Full Text] [Related]
3. Breast Cancer Risk and Mammographic Density Assessed with Semiautomated and Fully Automated Methods and BI-RADS. Jeffers AM; Sieh W; Lipson JA; Rothstein JH; McGuire V; Whittemore AS; Rubin DL Radiology; 2017 Feb; 282(2):348-355. PubMed ID: 27598536 [TBL] [Abstract][Full Text] [Related]
4. Derived mammographic masking measures based on simulated lesions predict the risk of interval cancer after controlling for known risk factors: a case-case analysis. Hinton B; Ma L; Mahmoudzadeh AP; Malkov S; Fan B; Greenwood H; Joe B; Lee V; Strand F; Kerlikowske K; Shepherd J Med Phys; 2019 Mar; 46(3):1309-1316. PubMed ID: 30697755 [TBL] [Abstract][Full Text] [Related]
5. The positive predictive value of BI-RADS microcalcification descriptors and final assessment categories. Bent CK; Bassett LW; D'Orsi CJ; Sayre JW AJR Am J Roentgenol; 2010 May; 194(5):1378-83. PubMed ID: 20410428 [TBL] [Abstract][Full Text] [Related]
6. The use of the Gail model, body mass index and SNPs to predict breast cancer among women with abnormal (BI-RADS 4) mammograms. McCarthy AM; Keller B; Kontos D; Boghossian L; McGuire E; Bristol M; Chen J; Domchek S; Armstrong K Breast Cancer Res; 2015 Jan; 17(1):1. PubMed ID: 25567532 [TBL] [Abstract][Full Text] [Related]
7. BI-RADS Category 5 Assessments at Diagnostic Breast Imaging:Outcomes Analysis Based on Lesion Descriptors. Yao MM; Joe BN; Sickles EA; Lee CS Acad Radiol; 2019 Aug; 26(8):1048-1052. PubMed ID: 30195413 [TBL] [Abstract][Full Text] [Related]
8. Radiological assessment of breast density by visual classification (BI-RADS) compared to automated volumetric digital software (Quantra): implications for clinical practice. Regini E; Mariscotti G; Durando M; Ghione G; Luparia A; Campanino PP; Bianchi CC; Bergamasco L; Fonio P; Gandini G Radiol Med; 2014 Oct; 119(10):741-9. PubMed ID: 24610166 [TBL] [Abstract][Full Text] [Related]
9. Sensitivity of screening mammography by density and texture: a cohort study from a population-based screening program in Denmark. von Euler-Chelpin M; Lillholm M; Vejborg I; Nielsen M; Lynge E Breast Cancer Res; 2019 Oct; 21(1):111. PubMed ID: 31623646 [TBL] [Abstract][Full Text] [Related]
10. Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors: automated measurement development for full field digital mammography. Fowler EE; Sellers TA; Lu B; Heine JJ Med Phys; 2013 Nov; 40(11):113502. PubMed ID: 24320473 [TBL] [Abstract][Full Text] [Related]
11. Longitudinal measurement of clinical mammographic breast density to improve estimation of breast cancer risk. Kerlikowske K; Ichikawa L; Miglioretti DL; Buist DS; Vacek PM; Smith-Bindman R; Yankaskas B; Carney PA; Ballard-Barbash R; J Natl Cancer Inst; 2007 Mar; 99(5):386-95. PubMed ID: 17341730 [TBL] [Abstract][Full Text] [Related]
12. Scoring System to Stratify Malignancy Risks for Mammographic Microcalcifications Based on Breast Imaging Reporting and Data System 5th Edition Descriptors. Youk JH; Gweon HM; Son EJ; Eun NL; Choi EJ; Kim JA Korean J Radiol; 2019 Dec; 20(12):1646-1652. PubMed ID: 31854152 [TBL] [Abstract][Full Text] [Related]
13. Mammographic density and structural features can individually and jointly contribute to breast cancer risk assessment in mammography screening: a case-control study. Winkel RR; von Euler-Chelpin M; Nielsen M; Petersen K; Lillholm M; Nielsen MB; Lynge E; Uldall WY; Vejborg I BMC Cancer; 2016 Jul; 16():414. PubMed ID: 27387546 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Clinical and Automated Breast Density Measurements: Implications for Risk Prediction and Supplemental Screening. Brandt KR; Scott CG; Ma L; Mahmoudzadeh AP; Jensen MR; Whaley DH; Wu FF; Malkov S; Hruska CB; Norman AD; Heine J; Shepherd J; Pankratz VS; Kerlikowske K; Vachon CM Radiology; 2016 Jun; 279(3):710-9. PubMed ID: 26694052 [TBL] [Abstract][Full Text] [Related]
15. Nonmasslike enhancement at breast MR imaging: the added value of mammography and US for lesion categorization. Thomassin-Naggara I; Trop I; Chopier J; David J; Lalonde L; Darai E; Rouzier R; Uzan S Radiology; 2011 Oct; 261(1):69-79. PubMed ID: 21771958 [TBL] [Abstract][Full Text] [Related]
16. A Cross-Sectional Observational Study to Compare the Role of Ultrasound with Mammography in Women Identified at High Risk for Breast Cancer in a Population in China. An P; Zhong S; Zhang R; Hou X; Xi R; Wang Y Med Sci Monit; 2020 Jun; 26():e919777. PubMed ID: 32576809 [TBL] [Abstract][Full Text] [Related]
17. External validation of a publicly available computer assisted diagnostic tool for mammographic mass lesions with two high prevalence research datasets. Benndorf M; Burnside ES; Herda C; Langer M; Kotter E Med Phys; 2015 Aug; 42(8):4987-96. PubMed ID: 26233224 [TBL] [Abstract][Full Text] [Related]
18. Predicting error in detecting mammographic masses among radiology trainees using statistical models based on BI-RADS features. Grimm LJ; Ghate SV; Yoon SC; Kuzmiak CM; Kim C; Mazurowski MA Med Phys; 2014 Mar; 41(3):031909. PubMed ID: 24593727 [TBL] [Abstract][Full Text] [Related]