BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30366907)

  • 1. A C9orf72-CARM1 axis regulates lipid metabolism under glucose starvation-induced nutrient stress.
    Liu Y; Wang T; Ji YJ; Johnson K; Liu H; Johnson K; Bailey S; Suk Y; Lu YN; Liu M; Wang J
    Genes Dev; 2018 Nov; 32(21-22):1380-1397. PubMed ID: 30366907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C9orf72-dependent lysosomal functions regulate epigenetic control of autophagy and lipid metabolism.
    Liu Y; Wang J
    Autophagy; 2019 May; 15(5):913-914. PubMed ID: 30767689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ALS-FTD-linked gene product, C9orf72, regulates neuronal morphogenesis via autophagy.
    Ho WY; Tai YK; Chang JC; Liang J; Tyan SH; Chen S; Guan JL; Zhou H; Shen HM; Koo E; Ling SC
    Autophagy; 2019 May; 15(5):827-842. PubMed ID: 30669939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systemic deregulation of autophagy upon loss of ALS- and FTD-linked C9orf72.
    Ji YJ; Ugolino J; Brady NR; Hamacher-Brady A; Wang J
    Autophagy; 2017 Jul; 13(7):1254-1255. PubMed ID: 28319438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic dysfunction and altered excitability in C9ORF72 ALS/FTD.
    Starr A; Sattler R
    Brain Res; 2018 Aug; 1693(Pt A):98-108. PubMed ID: 29453960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SMCR8 negatively regulates AKT and MTORC1 signaling to modulate lysosome biogenesis and tissue homeostasis.
    Lan Y; Sullivan PM; Hu F
    Autophagy; 2019 May; 15(5):871-885. PubMed ID: 30696333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C9orf72/ALFA-1 controls TFEB/HLH-30-dependent metabolism through dynamic regulation of Rag GTPases.
    Ji YJ; Ugolino J; Zhang T; Lu J; Kim D; Wang J
    PLoS Genet; 2020 Apr; 16(4):e1008738. PubMed ID: 32282804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy.
    Chitiprolu M; Jagow C; Tremblay V; Bondy-Chorney E; Paris G; Savard A; Palidwor G; Barry FA; Zinman L; Keith J; Rogaeva E; Robertson J; Lavallée-Adam M; Woulfe J; Couture JF; Côté J; Gibbings D
    Nat Commun; 2018 Jul; 9(1):2794. PubMed ID: 30022074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the C9orf72 ARF GAP complex that is haploinsufficient in ALS and FTD.
    Su MY; Fromm SA; Zoncu R; Hurley JH
    Nature; 2020 Sep; 585(7824):251-255. PubMed ID: 32848248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy.
    Yang M; Liang C; Swaminathan K; Herrlinger S; Lai F; Shiekhattar R; Chen JF
    Sci Adv; 2016 Sep; 2(9):e1601167. PubMed ID: 27617292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Impact of C9orf72 on Japanese Patients with Amytrophic Lateral Sclerosis (ALS)/Frontotemporal Dementia (FTD)].
    Tomiyama H
    Brain Nerve; 2019 Nov; 71(11):1190-1208. PubMed ID: 31722305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A C9orf72 ALS/FTD Ortholog Acts in Endolysosomal Degradation and Lysosomal Homeostasis.
    Corrionero A; Horvitz HR
    Curr Biol; 2018 May; 28(10):1522-1535.e5. PubMed ID: 29731301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that C9ORF72 Dipeptide Repeat Proteins Associate with U2 snRNP to Cause Mis-splicing in ALS/FTD Patients.
    Yin S; Lopez-Gonzalez R; Kunz RC; Gangopadhyay J; Borufka C; Gygi SP; Gao FB; Reed R
    Cell Rep; 2017 Jun; 19(11):2244-2256. PubMed ID: 28614712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunohistochemical detection of C9orf72 protein in frontotemporal lobar degeneration and motor neurone disease: patterns of immunostaining and an evaluation of commercial antibodies.
    Davidson YS; Robinson AC; Rollinson S; Pickering-Brown S; Xiao S; Robertson J; Mann DMA
    Amyotroph Lateral Scler Frontotemporal Degener; 2018 Feb; 19(1-2):102-111. PubMed ID: 28766957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smcr8 deficiency disrupts axonal transport-dependent lysosomal function and promotes axonal swellings and gain of toxicity in C9ALS/FTD mouse models.
    Liang C; Shao Q; Zhang W; Yang M; Chang Q; Chen R; Chen JF
    Hum Mol Genet; 2019 Dec; 28(23):3940-3953. PubMed ID: 31625563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-autonomous immune dysfunction driven by disrupted autophagy in
    Banerjee P; Mehta AR; Nirujogi RS; Cooper J; James OG; Nanda J; Longden J; Burr K; McDade K; Salzinger A; Paza E; Newton J; Story D; Pal S; Smith C; Alessi DR; Selvaraj BT; Priller J; Chandran S
    Sci Adv; 2023 Apr; 9(16):eabq0651. PubMed ID: 37083530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All in the Family: Repeats and ALS/FTD.
    Pattamatta A; Cleary JD; Ranum LPW
    Trends Neurosci; 2018 May; 41(5):247-250. PubMed ID: 29703376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WDR41 supports lysosomal response to changes in amino acid availability.
    Amick J; Tharkeshwar AK; Amaya C; Ferguson SM
    Mol Biol Cell; 2018 Sep; 29(18):2213-2227. PubMed ID: 29995611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disease Mechanisms of
    Gendron TF; Petrucelli L
    Cold Spring Harb Perspect Med; 2018 Apr; 8(4):. PubMed ID: 28130314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis.
    Farg MA; Konopka A; Soo KY; Ito D; Atkin JD
    Hum Mol Genet; 2017 Aug; 26(15):2882-2896. PubMed ID: 28481984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.