These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30366936)

  • 1. Zebrafish knock-ins swim into the mainstream.
    Prykhozhij SV; Berman JN
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30366936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.
    Prykhozhij SV; Fuller C; Steele SL; Veinotte CJ; Razaghi B; Robitaille JM; McMaster CR; Shlien A; Malkin D; Berman JN
    Nucleic Acids Res; 2018 Sep; 46(17):e102. PubMed ID: 29905858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments.
    Boel A; De Saffel H; Steyaert W; Callewaert B; De Paepe A; Coucke PJ; Willaert A
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders.
    Tessadori F; Roessler HI; Savelberg SMC; Chocron S; Kamel SM; Duran KJ; van Haelst MM; van Haaften G; Bakkers J
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Guide to Computational Tools and Design Strategies for Genome Editing Experiments in Zebrafish Using CRISPR/Cas9.
    Prykhozhij SV; Rajan V; Berman JN
    Zebrafish; 2016 Feb; 13(1):70-3. PubMed ID: 26683213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Generation of Knock-In Zebrafish Models for Inherited Disorders Using CRISPR-Cas9 Ribonucleoprotein Complexes.
    de Vrieze E; de Bruijn SE; Reurink J; Broekman S; van de Riet V; Aben M; Kremer H; van Wijk E
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homology Directed Knockin of Point Mutations in the Zebrafish tardbp and fus Genes in ALS Using the CRISPR/Cas9 System.
    Armstrong GA; Liao M; You Z; Lissouba A; Chen BE; Drapeau P
    PLoS One; 2016; 11(3):e0150188. PubMed ID: 26930076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system.
    Zhang Y; Qin W; Lu X; Xu J; Huang H; Bai H; Li S; Lin S
    Nat Commun; 2017 Jul; 8(1):118. PubMed ID: 28740134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted knock-in of CreER
    Kesavan G; Hammer J; Hans S; Brand M
    Cell Tissue Res; 2018 Apr; 372(1):41-50. PubMed ID: 29435650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Rapid and Cheap Methodology for CRISPR/Cas9 Zebrafish Mutant Screening.
    D'Agostino Y; Locascio A; Ristoratore F; Sordino P; Spagnuolo A; Borra M; D'Aniello S
    Mol Biotechnol; 2016 Jan; 58(1):73-8. PubMed ID: 26676479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-based genome editing of zebrafish.
    Sharma P; Sharma BS; Verma RJ
    Prog Mol Biol Transl Sci; 2021; 180():69-84. PubMed ID: 33934838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish.
    Kawahara A
    Methods Mol Biol; 2017; 1630():165-173. PubMed ID: 28643258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish.
    Hisano Y; Sakuma T; Nakade S; Ohga R; Ota S; Okamoto H; Yamamoto T; Kawahara A
    Sci Rep; 2015 Mar; 5():8841. PubMed ID: 25740433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast.
    Zhang XR; He JB; Wang YZ; Du LL
    G3 (Bethesda); 2018 May; 8(6):2067-2077. PubMed ID: 29703785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-based genome engineering of zebrafish using a seamless integration strategy.
    Luo JJ; Bian WP; Liu Y; Huang HY; Yin Q; Yang XJ; Pei DS
    FASEB J; 2018 Sep; 32(9):5132-5142. PubMed ID: 29812974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.
    Rivera-Torres N; Banas K; Bialk P; Bloh KM; Kmiec EB
    PLoS One; 2017; 12(1):e0169350. PubMed ID: 28052104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.
    Yin L; Maddison LA; Chen W
    Methods Cell Biol; 2016; 135():3-17. PubMed ID: 27443918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.