BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30367006)

  • 1. The Glycine Lipids of Bacteroides thetaiotaomicron Are Important for Fitness during Growth
    Lynch A; Tammireddy SR; Doherty MK; Whitfield PD; Clarke DJ
    Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30367006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mucin-responsive hybrid two-component system controls Bacteroides thetaiotaomicron colonization and gut homeostasis.
    Lee JH; Kwon SJ; Han JY; Cho SH; Cho YJ; Park JH
    J Microbiol; 2022 Feb; 60(2):215-223. PubMed ID: 35102527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially resolved lipidomics shows conditional transfer of lipids produced by Bacteroides thetaiotaomicron into the mouse gut.
    Mirretta Barone C; Heaver SL; Gruber L; Zundel F; Vu DL; Ley RE
    Cell Host Microbe; 2024 Jun; 32(6):1025-1036.e5. PubMed ID: 38795710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capsular Polysaccharide Cross-Regulation Modulates Bacteroides thetaiotaomicron Biofilm Formation.
    Béchon N; Mihajlovic J; Vendrell-Fernández S; Chain F; Langella P; Beloin C; Ghigo JM
    mBio; 2020 Jun; 11(3):. PubMed ID: 32576670
    [No Abstract]   [Full Text] [Related]  

  • 5. Intestinal IgA Regulates Expression of a Fructan Polysaccharide Utilization Locus in Colonizing Gut Commensal Bacteroides thetaiotaomicron.
    Joglekar P; Ding H; Canales-Herrerias P; Pasricha PJ; Sonnenburg JL; Peterson DA
    mBio; 2019 Nov; 10(6):. PubMed ID: 31690674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments.
    Liu H; Shiver AL; Price MN; Carlson HK; Trotter VV; Chen Y; Escalante V; Ray J; Hern KE; Petzold CJ; Turnbaugh PJ; Huang KC; Arkin AP; Deutschbauer AM
    Cell Rep; 2021 Mar; 34(9):108789. PubMed ID: 33657378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Bacteroidales produce an N-acylated derivative of glycine with both cholesterol-solubilising and hemolytic activity.
    Lynch A; Crowley E; Casey E; Cano R; Shanahan R; McGlacken G; Marchesi JR; Clarke DJ
    Sci Rep; 2017 Oct; 7(1):13270. PubMed ID: 29038461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic genetic adaptation of Bacteroides thetaiotaomicron during murine gut colonization.
    Kennedy MS; Zhang M; DeLeon O; Bissell J; Trigodet F; Lolans K; Temelkova S; Carroll KT; Fiebig A; Deutschbauer A; Sidebottom AM; Lake J; Henry C; Rice PA; Bergelson J; Chang EB
    Cell Rep; 2023 Aug; 42(8):113009. PubMed ID: 37598339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation and Alteration of Organic Acid Synthesis Pathways in the Mammalian Gut Symbiont Bacteroides thetaiotaomicron.
    Porter NT; Larsbrink J
    Microbiol Spectr; 2022 Feb; 10(1):e0231221. PubMed ID: 35196806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfatases and a radical S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont, Bacteroides thetaiotaomicron.
    Benjdia A; Martens EC; Gordon JI; Berteau O
    J Biol Chem; 2011 Jul; 286(29):25973-82. PubMed ID: 21507958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteria require phase separation for fitness in the mammalian gut.
    Krypotou E; Townsend GE; Gao X; Tachiyama S; Liu J; Pokorzynski ND; Goodman AL; Groisman EA
    Science; 2023 Mar; 379(6637):1149-1156. PubMed ID: 36927025
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Béchon N; Mihajlovic J; Lopes AA; Vendrell-Fernández S; Deschamps J; Briandet R; Sismeiro O; Martin-Verstraete I; Dupuy B; Ghigo JM
    Proc Natl Acad Sci U S A; 2022 Feb; 119(7):. PubMed ID: 35145026
    [No Abstract]   [Full Text] [Related]  

  • 13. Loss of
    McMillan AS; Foley MH; Perkins CE; Theriot CM
    Microbiol Spectr; 2024 Jan; 12(1):e0357623. PubMed ID: 38018975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipidomics Analysis of Outer Membrane Vesicles and Elucidation of the Inositol Phosphoceramide Biosynthetic Pathway in Bacteroides thetaiotaomicron.
    Sartorio MG; Valguarnera E; Hsu FF; Feldman MF
    Microbiol Spectr; 2022 Feb; 10(1):e0063421. PubMed ID: 35080445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Biosynthesis of Lipooligosaccharide from
    Jacobson AN; Choudhury BP; Fischbach MA
    mBio; 2018 Mar; 9(2):. PubMed ID: 29535205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteroides thetaiotaomicron Outer Membrane Vesicles Modulate Virulence of Shigella flexneri.
    Xerri NL; Payne SM
    mBio; 2022 Oct; 13(5):e0236022. PubMed ID: 36102517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Family of RNA-Binding Proteins Regulate Polysaccharide Metabolism in
    Adams AND; Azam MS; Costliow ZA; Ma X; Degnan PH; Vanderpool CK
    J Bacteriol; 2021 Oct; 203(21):e0021721. PubMed ID: 34251866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human symbiont Bacteroides thetaiotaomicron promotes diet-induced obesity by regulating host lipid metabolism.
    Cho SH; Cho YJ; Park JH
    J Microbiol; 2022 Jan; 60(1):118-127. PubMed ID: 34964947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboxyspermidine decarboxylase of the prominent intestinal microbiota species Bacteroides thetaiotaomicron is required for spermidine biosynthesis and contributes to normal growth.
    Sakanaka M; Sugiyama Y; Kitakata A; Katayama T; Kurihara S
    Amino Acids; 2016 Oct; 48(10):2443-51. PubMed ID: 27118128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipidomic Analysis Reveals Differences in
    Ryan E; Gonzalez Pastor B; Gethings LA; Clarke DJ; Joyce SA
    Metabolites; 2023 Feb; 13(3):. PubMed ID: 36984802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.