These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 30367051)

  • 1. Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival.
    Ramazzotti D; Lal A; Wang B; Batzoglou S; Sidow A
    Nat Commun; 2018 Oct; 9(1):4453. PubMed ID: 30367051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. COPS: A novel platform for multi-omic disease subtype discovery via robust multi-objective evaluation of clustering algorithms.
    Rintala TJ; Fortino V
    PLoS Comput Biol; 2024 Aug; 20(8):e1012275. PubMed ID: 39102448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-omic and multi-view clustering algorithms: review and cancer benchmark.
    Rappoport N; Shamir R
    Nucleic Acids Res; 2018 Nov; 46(20):10546-10562. PubMed ID: 30295871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MOSClip: multi-omic and survival pathway analysis for the identification of survival associated gene and modules.
    Martini P; Chiogna M; Calura E; Romualdi C
    Nucleic Acids Res; 2019 Aug; 47(14):e80. PubMed ID: 31049575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilevel omic data clustering reveals variable contribution of methylator phenotype to integrative cancer subtypes.
    Karpinski P; Patai AV; Hap W; Kielan W; Laczmanska I; Sasiadek MM
    Epigenomics; 2018 Oct; 10(10):1289-1299. PubMed ID: 29896967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MethCNA: a database for integrating genomic and epigenomic data in human cancer.
    Deng G; Yang J; Zhang Q; Xiao ZX; Cai H
    BMC Genomics; 2018 Feb; 19(1):138. PubMed ID: 29433427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets.
    Wei Z; Zhang Y; Weng W; Chen J; Cai H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32533167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supervised Graph Clustering for Cancer Subtyping Based on Survival Analysis and Integration of Multi-Omic Tumor Data.
    Liu C; Cao W; Wu S; Shen W; Jiang D; Yu Z; Wong HS
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):1193-1202. PubMed ID: 32750893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pan-cancer subtyping in a 2D-map shows substructures that are driven by specific combinations of molecular characteristics.
    Taskesen E; Huisman SM; Mahfouz A; Krijthe JH; de Ridder J; van de Stolpe A; van den Akker E; Verheagh W; Reinders MJ
    Sci Rep; 2016 Apr; 6():24949. PubMed ID: 27109935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of cancer subtypes associated with clinical outcomes by multi-omics integrative clustering.
    Crippa V; Malighetti F; Villa M; Graudenzi A; Piazza R; Mologni L; Ramazzotti D
    Comput Biol Med; 2023 Aug; 162():107064. PubMed ID: 37267828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival differences of CIMP subtypes integrated with CNA information in human breast cancer.
    Wang H; Yan W; Zhang S; Gu Y; Wang Y; Wei Y; Liu H; Wang F; Wu Q; Zhang Y
    Oncotarget; 2017 Jul; 8(30):48807-48819. PubMed ID: 28415743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data.
    El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subtype identification from heterogeneous TCGA datasets on a genomic scale by multi-view clustering with enhanced consensus.
    Cai M; Li L
    BMC Med Genomics; 2017 Dec; 10(Suppl 4):75. PubMed ID: 29322925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-omic signatures identify pan-cancer classes of tumors beyond tissue of origin.
    González-Reymúndez A; Vázquez AI
    Sci Rep; 2020 May; 10(1):8341. PubMed ID: 32433524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MCNF: A Novel Method for Cancer Subtyping by Integrating Multi-Omics and Clinical Data.
    Zhao L; Yan H
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1682-1690. PubMed ID: 30990192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network based stratification of major cancers by integrating somatic mutation and gene expression data.
    He Z; Zhang J; Yuan X; Liu Z; Liu B; Tuo S; Liu Y
    PLoS One; 2017; 12(5):e0177662. PubMed ID: 28520777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathway-based deep clustering for molecular subtyping of cancer.
    Mallavarapu T; Hao J; Kim Y; Oh JH; Kang M
    Methods; 2020 Feb; 173():24-31. PubMed ID: 31247294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biologically inspired survival analysis based on integrating gene expression as mediator with genomic variants.
    Youssef I; Clarke R; Shih IeM; Wang Y; Yu G
    Comput Biol Med; 2016 Oct; 77():231-9. PubMed ID: 27619193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery.
    Speicher NK; Pfeifer N
    Bioinformatics; 2015 Jun; 31(12):i268-75. PubMed ID: 26072491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-omics integration with weighted affinity and self-diffusion applied for cancer subtypes identification.
    Duan X; Ding X; Zhao Z
    J Transl Med; 2024 Jan; 22(1):79. PubMed ID: 38243340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.