These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30367051)

  • 21. Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery.
    Speicher NK; Pfeifer N
    Bioinformatics; 2015 Jun; 31(12):i268-75. PubMed ID: 26072491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrative clustering of multi-level 'omic data based on non-negative matrix factorization algorithm.
    Chalise P; Fridley BL
    PLoS One; 2017; 12(5):e0176278. PubMed ID: 28459819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PROMO: an interactive tool for analyzing clinically-labeled multi-omic cancer datasets.
    Netanely D; Stern N; Laufer I; Shamir R
    BMC Bioinformatics; 2019 Dec; 20(1):732. PubMed ID: 31878868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration.
    Verbeke LP; Van den Eynden J; Fierro AC; Demeester P; Fostier J; Marchal K
    PLoS One; 2015; 10(7):e0133503. PubMed ID: 26217958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Group Lasso Regularized Deep Learning for Cancer Prognosis from Multi-Omics and Clinical Features.
    Xie G; Dong C; Kong Y; Zhong JF; Li M; Wang K
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30901858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Convex Multi-View Clustering Via Robust Low Rank Approximation With Application to Multi-Omic Data.
    Shetta O; Niranjan M; Dasmahapatra S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3340-3352. PubMed ID: 34705655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Similarity Fusion via Exploiting High Order Proximity for Cancer Subtyping.
    Chen J; Rong W; Tao G; Cai H
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):658-667. PubMed ID: 34971537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Importance of rare gene copy number alterations for personalized tumor characterization and survival analysis.
    Seifert M; Friedrich B; Beyer A
    Genome Biol; 2016 Oct; 17(1):204. PubMed ID: 27716417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach.
    Liang M; Li Z; Chen T; Zeng J
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):928-37. PubMed ID: 26357333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated Genomics for Pinpointing Survival Loci within Arm-Level Somatic Copy Number Alterations.
    Roy DM; Walsh LA; Desrichard A; Huse JT; Wu W; Gao J; Bose P; Lee W; Chan TA
    Cancer Cell; 2016 May; 29(5):737-750. PubMed ID: 27165745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeted DNA and RNA Sequencing of Paired Urothelial and Squamous Bladder Cancers Reveals Discordant Genomic and Transcriptomic Events and Unique Therapeutic Implications.
    Hovelson DH; Udager AM; McDaniel AS; Grivas P; Palmbos P; Tamura S; Lazo de la Vega L; Palapattu G; Veeneman B; El-Sawy L; Sadis SE; Morgan TM; Montgomery JS; Weizer AZ; Day KC; Neamati N; Liebert M; Keller ET; Day ML; Mehra R; Tomlins SA
    Eur Urol; 2018 Dec; 74(6):741-753. PubMed ID: 30033047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cooperative genomic alteration network reveals molecular classification across 12 major cancer types.
    Zhang H; Deng Y; Zhang Y; Ping Y; Zhao H; Pang L; Zhang X; Wang L; Xu C; Xiao Y; Li X
    Nucleic Acids Res; 2017 Jan; 45(2):567-582. PubMed ID: 27899621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. WMLRR: A Weighted Multi-View Low Rank Representation to Identify Cancer Subtypes From Multiple Types of Omics Data.
    Sun Y; Ou-Yang L; Dai DQ
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2891-2897. PubMed ID: 33656995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cancer subtyping with heterogeneous multi-omics data via hierarchical multi-kernel learning.
    Wei Y; Li L; Zhao X; Yang H; Sa J; Cao H; Cui Y
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36433785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cancer Subtype Discovery Based on Integrative Model of Multigenomic Data.
    Ge SG; Xia J; Sha W; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(5):1115-1121. PubMed ID: 28113782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergistic effect of different levels of genomic data for cancer clinical outcome prediction.
    Kim D; Shin H; Song YS; Kim JH
    J Biomed Inform; 2012 Dec; 45(6):1191-8. PubMed ID: 22910106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational Methods for Subtyping of Tumors and Their Applications for Deciphering Tumor Heterogeneity.
    Zhang S
    Methods Mol Biol; 2019; 1878():193-207. PubMed ID: 30378077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.