BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30367061)

  • 1. Enhanced mRNA FISH with compact quantum dots.
    Liu Y; Le P; Lim SJ; Ma L; Sarkar S; Han Z; Murphy SJ; Kosari F; Vasmatzis G; Cheville JC; Smith AM
    Nat Commun; 2018 Oct; 9(1):4461. PubMed ID: 30367061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence In Situ Hybridization with Quantum Dot Labels in E. coli Cells.
    Liu Y; Han Z; Sarkar S; Smith AM
    Methods Mol Biol; 2021; 2246():141-155. PubMed ID: 33576988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution whole-mount in situ hybridization using Quantum Dot nanocrystals.
    Ioannou A; Eleftheriou I; Lubatti A; Charalambous A; Skourides PA
    J Biomed Biotechnol; 2012; 2012():627602. PubMed ID: 22287835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization.
    Chan P; Yuen T; Ruf F; Gonzalez-Maeso J; Sealfon SC
    Nucleic Acids Res; 2005 Oct; 33(18):e161. PubMed ID: 16224100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dots as new-generation fluorochromes for FISH: an appraisal.
    Ioannou D; Tempest HG; Skinner BM; Thornhill AR; Ellis M; Griffin DK
    Chromosome Res; 2009; 17(4):519-30. PubMed ID: 19644760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protecting Quantum Dot Fluorescence from Quenching to Achieve a Reliable Automated Multiplex Fluorescence In Situ Hybridization Assay.
    Zhang W; Hubbard A; Pang L; Parkinson LB; Brunhoeber P; Wang Y; Tang L
    J Biomed Nanotechnol; 2015 Sep; 11(9):1583-96. PubMed ID: 26485928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes.
    Hwang G; Lee H; Lee J
    Biochem Biophys Res Commun; 2015 Nov; 467(2):328-33. PubMed ID: 26449454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single molecule localization imaging of telomeres and centromeres using fluorescence in situ hybridization and semiconductor quantum dots.
    Wang L; Zong S; Wang Z; Lu J; Chen C; Zhang R; Cui Y
    Nanotechnology; 2018 Jul; 29(28):285602. PubMed ID: 29671751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct in situ hybridization with oligonucleotide functionalized quantum dot probes.
    Bentolila LA
    Methods Mol Biol; 2010; 659():147-63. PubMed ID: 20809309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Specific Fluorescence In Situ Hybridization with Quantum Dots for Single-Molecule RNA Imaging in Formalin-Fixed Paraffin-Embedded Tumor Tissues.
    Zhao Z; Jiang M; He C; Yin W; Feng Y; Wang P; Ying L; Fu T; Su D; Peng R; Tan W
    ACS Nano; 2024 Apr; 18(14):9958-9968. PubMed ID: 38547522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum dots for quantitative imaging: from single molecules to tissue.
    Vu TQ; Lam WY; Hatch EW; Lidke DS
    Cell Tissue Res; 2015 Apr; 360(1):71-86. PubMed ID: 25620410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oriented Bioconjugation of Unmodified Antibodies to Quantum Dots Capped with Copolymeric Ligands as Versatile Cellular Imaging Tools.
    Tasso M; Singh MK; Giovanelli E; Fragola A; Loriette V; Regairaz M; Dautry F; Treussart F; Lenkei Z; Lequeux N; Pons T
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26904-13. PubMed ID: 26551755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and separation of semiconductor quantum dots and their conjugates by capillary electrophoresis.
    Sang F; Huang X; Ren J
    Electrophoresis; 2014 Mar; 35(6):793-803. PubMed ID: 24375522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting genomic aberrations by fluorescence in situ hybridization with quantum dots-labeled probes.
    Jiang Z; Li R; Todd NW; Stass SA; Jiang F
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4254-9. PubMed ID: 18283800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli.
    Wu SM; Zhao X; Zhang ZL; Xie HY; Tian ZQ; Peng J; Lu ZX; Pang DW; Xie ZX
    Chemphyschem; 2006 May; 7(5):1062-7. PubMed ID: 16625674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of cell internalization and photostability of red and green emitter quantum dots upon entrapment in novel cationic nanoliposomes.
    Samadikhah HR; Nikkhah M; Hosseinkhani S
    Luminescence; 2017 Jun; 32(4):517-528. PubMed ID: 27767252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dot surface chemistry and functionalization for cell targeting and imaging.
    Bilan R; Fleury F; Nabiev I; Sukhanova A
    Bioconjug Chem; 2015 Apr; 26(4):609-24. PubMed ID: 25710410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo imaging with quantum dots.
    Wang C; Gao X; Su X
    Anal Bioanal Chem; 2010 Jun; 397(4):1397-415. PubMed ID: 20174786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-templated assembly of a heterobivalent quantum dot nanoprobe for extra- and intracellular dual-targeting and imaging of live cancer cells.
    Wei W; He X; Ma N
    Angew Chem Int Ed Engl; 2014 May; 53(22):5573-7. PubMed ID: 24740625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging and Quantification of mRNA Molecules at Single-Cell Resolution in the Human Fungal Pathogen Candida albicans.
    Moreno-Velásquez SD; Pérez JC
    mSphere; 2021 Aug; 6(4):e0041121. PubMed ID: 34232078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.