BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 30367097)

  • 1. Investigating the Ca
    Vinberg F; Kefalov VJ
    Sci Rep; 2018 Oct; 8(1):15864. PubMed ID: 30367097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors.
    Vinberg F; Peshenko IV; Chen J; Dizhoor AM; Kefalov VJ
    J Biol Chem; 2018 May; 293(19):7457-7465. PubMed ID: 29549122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of guanylyl cyclase modulation in mouse cone phototransduction.
    Sakurai K; Chen J; Kefalov VJ
    J Neurosci; 2011 Jun; 31(22):7991-8000. PubMed ID: 21632921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1.
    Sato S; Peshenko IV; Olshevskaya EV; Kefalov VJ; Dizhoor AM
    J Neurosci; 2018 Mar; 38(12):2990-3000. PubMed ID: 29440533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of mammalian cone phototransduction by recoverin and rhodopsin kinase.
    Sakurai K; Chen J; Khani SC; Kefalov VJ
    J Biol Chem; 2015 Apr; 290(14):9239-50. PubMed ID: 25673692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic relay mechanism stimulates cyclic GMP synthesis in rod photoresponse: biochemical and physiological study in guanylyl cyclase activating protein 1 knockout mice.
    Makino CL; Wen XH; Olshevskaya EV; Peshenko IV; Savchenko AB; Dizhoor AM
    PLoS One; 2012; 7(10):e47637. PubMed ID: 23082185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel Ca2+-feedback mechanism extends the operating range of mammalian rods to brighter light.
    Vinberg F; Turunen TT; Heikkinen H; Pitkänen M; Koskelainen A
    J Gen Physiol; 2015 Oct; 146(4):307-21. PubMed ID: 26415569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High cGMP synthetic activity in carp cones.
    Takemoto N; Tachibanaki S; Kawamura S
    Proc Natl Acad Sci U S A; 2009 Jul; 106(28):11788-93. PubMed ID: 19556550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exchange of Cone for Rod Phosphodiesterase 6 Catalytic Subunits in Rod Photoreceptors Mimics in Part Features of Light Adaptation.
    Majumder A; Pahlberg J; Muradov H; Boyd KK; Sampath AP; Artemyev NO
    J Neurosci; 2015 Jun; 35(24):9225-35. PubMed ID: 26085644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-clamp recordings of light responses from wild-type and mutant mouse cone photoreceptors.
    Ingram NT; Sampath AP; Fain GL
    J Gen Physiol; 2019 Nov; 151(11):1287-1299. PubMed ID: 31562185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bleaching of mouse rods: microspectrophotometry and suction-electrode recording.
    Nymark S; Frederiksen R; Woodruff ML; Cornwall MC; Fain GL
    J Physiol; 2012 May; 590(10):2353-64. PubMed ID: 22451436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors.
    Mendez A; Burns ME; Sokal I; Dizhoor AM; Baehr W; Palczewski K; Baylor DA; Chen J
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9948-53. PubMed ID: 11493703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of recoverin in rod photoreceptor light adaptation.
    Morshedian A; Woodruff ML; Fain GL
    J Physiol; 2018 Apr; 596(8):1513-1526. PubMed ID: 29435986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models.
    Korenbrot JI
    Prog Retin Eye Res; 2012 Sep; 31(5):442-66. PubMed ID: 22658984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In intact mammalian photoreceptors, Ca2+-dependent modulation of cGMP-gated ion channels is detectable in cones but not in rods.
    Rebrik TI; Korenbrot JI
    J Gen Physiol; 2004 Jan; 123(1):63-75. PubMed ID: 14699078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Na(+)/Ca(2+), K(+) exchanger 2 modulates mammalian cone phototransduction.
    Sakurai K; Vinberg F; Wang T; Chen J; Kefalov VJ
    Sci Rep; 2016 Sep; 6():32521. PubMed ID: 27580676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinol dehydrogenase 8 and ATP-binding cassette transporter 4 modulate dark adaptation of M-cones in mammalian retina.
    Kolesnikov AV; Maeda A; Tang PH; Imanishi Y; Palczewski K; Kefalov VJ
    J Physiol; 2015 Nov; 593(22):4923-41. PubMed ID: 26350353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel
    Biasi A; Marino V; Dal Cortivo G; Maltese PE; Modarelli AM; Bertelli M; Colombo L; Dell'Orco D
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative aspects of cGMP phosphodiesterase activation in carp rods and cones.
    Koshitani Y; Tachibanaki S; Kawamura S
    J Biol Chem; 2014 Jan; 289(5):2651-7. PubMed ID: 24344136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.