These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1201 related articles for article (PubMed ID: 30367165)

  • 1. Organizational principles of 3D genome architecture.
    Rowley MJ; Corces VG
    Nat Rev Genet; 2018 Dec; 19(12):789-800. PubMed ID: 30367165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin organization by an interplay of loop extrusion and compartmental segregation.
    Nuebler J; Fudenberg G; Imakaev M; Abdennur N; Mirny LA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6697-E6706. PubMed ID: 29967174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent evidence that TADs and chromatin loops are dynamic structures.
    Hansen AS; Cattoglio C; Darzacq X; Tjian R
    Nucleus; 2018 Jan; 9(1):20-32. PubMed ID: 29077530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of 3D genome organization, guided by cohesin and CTCF looping, on sex-biased chromatin interactions and gene expression in mouse liver.
    Matthews BJ; Waxman DJ
    Epigenetics Chromatin; 2020 Jul; 13(1):30. PubMed ID: 32680543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding.
    Hsieh TS; Cattoglio C; Slobodyanyuk E; Hansen AS; Rando OJ; Tjian R; Darzacq X
    Mol Cell; 2020 May; 78(3):539-553.e8. PubMed ID: 32213323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
    Wutz G; Várnai C; Nagasaka K; Cisneros DA; Stocsits RR; Tang W; Schoenfelder S; Jessberger G; Muhar M; Hossain MJ; Walther N; Koch B; Kueblbeck M; Ellenberg J; Zuber J; Fraser P; Peters JM
    EMBO J; 2017 Dec; 36(24):3573-3599. PubMed ID: 29217591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionarily Conserved Principles Predict 3D Chromatin Organization.
    Rowley MJ; Nichols MH; Lyu X; Ando-Kuri M; Rivera ISM; Hermetz K; Wang P; Ruan Y; Corces VG
    Mol Cell; 2017 Sep; 67(5):837-852.e7. PubMed ID: 28826674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin accessibility and the regulatory epigenome.
    Klemm SL; Shipony Z; Greenleaf WJ
    Nat Rev Genet; 2019 Apr; 20(4):207-220. PubMed ID: 30675018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of loop extrusion in enhancer-mediated gene activation.
    Karpinska MA; Oudelaar AM
    Curr Opin Genet Dev; 2023 Apr; 79():102022. PubMed ID: 36842325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo.
    Hanssen LLP; Kassouf MT; Oudelaar AM; Biggs D; Preece C; Downes DJ; Gosden M; Sharpe JA; Sloane-Stanley JA; Hughes JR; Davies B; Higgs DR
    Nat Cell Biol; 2017 Aug; 19(8):952-961. PubMed ID: 28737770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TAD cliques predict key features of chromatin organization.
    Liyakat Ali TM; Brunet A; Collas P; Paulsen J
    BMC Genomics; 2021 Jul; 22(1):499. PubMed ID: 34217222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression.
    Vos ESM; Valdes-Quezada C; Huang Y; Allahyar A; Verstegen MJAM; Felder AK; van der Vegt F; Uijttewaal ECH; Krijger PHL; de Laat W
    Mol Cell; 2021 Aug; 81(15):3082-3095.e6. PubMed ID: 34197738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamic role of cohesin in maintaining human genome architecture.
    Agarwal A; Korsak S; Choudhury A; Plewczynski D
    Bioessays; 2023 Oct; 45(10):e2200240. PubMed ID: 37603403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Organization of Chromatin: Transcriptional Control of Adaptive Immune Cell Development.
    Pongubala JMR; Murre C
    Front Immunol; 2021; 12():633825. PubMed ID: 33854505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.
    Poterlowicz K; Yarker JL; Malashchuk I; Lajoie BR; Mardaryev AN; Gdula MR; Sharov AA; Kohwi-Shigematsu T; Botchkarev VA; Fessing MY
    PLoS Genet; 2017 Sep; 13(9):e1006966. PubMed ID: 28863138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The multiscale effects of polycomb mechanisms on 3D chromatin folding.
    Cheutin T; Cavalli G
    Crit Rev Biochem Mol Biol; 2019 Oct; 54(5):399-417. PubMed ID: 31698957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of 3D genome organization in development and cell differentiation.
    Zheng H; Xie W
    Nat Rev Mol Cell Biol; 2019 Sep; 20(9):535-550. PubMed ID: 31197269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D genome organization during lymphocyte development and activation.
    van Schoonhoven A; Huylebroeck D; Hendriks RW; Stadhouders R
    Brief Funct Genomics; 2020 Mar; 19(2):71-82. PubMed ID: 31819944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells.
    Cuadrado A; Giménez-Llorente D; Kojic A; Rodríguez-Corsino M; Cuartero Y; Martín-Serrano G; Gómez-López G; Marti-Renom MA; Losada A
    Cell Rep; 2019 Jun; 27(12):3500-3510.e4. PubMed ID: 31216471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principles of 3D compartmentalization of the human genome.
    Nichols MH; Corces VG
    Cell Rep; 2021 Jun; 35(13):109330. PubMed ID: 34192544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 61.