These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1201 related articles for article (PubMed ID: 30367165)

  • 21. Condensin II Counteracts Cohesin and RNA Polymerase II in the Establishment of 3D Chromatin Organization.
    Rowley MJ; Lyu X; Rana V; Ando-Kuri M; Karns R; Bosco G; Corces VG
    Cell Rep; 2019 Mar; 26(11):2890-2903.e3. PubMed ID: 30865881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. KSHV Topologically Associating Domains in Latent and Reactivated Viral Chromatin.
    Campbell M; Chantarasrivong C; Yanagihashi Y; Inagaki T; Davis RR; Nakano K; Kumar A; Tepper CG; Izumiya Y
    J Virol; 2022 Jul; 96(14):e0056522. PubMed ID: 35867573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromatin Architecture in the Fly: Living without CTCF/Cohesin Loop Extrusion?: Alternating Chromatin States Provide a Basis for Domain Architecture in Drosophila.
    Matthews NE; White R
    Bioessays; 2019 Sep; 41(9):e1900048. PubMed ID: 31264253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes.
    Fan H; Lv P; Huo X; Wu J; Wang Q; Cheng L; Liu Y; Tang QQ; Zhang L; Zhang F; Zheng X; Wu H; Wen B
    Genome Res; 2018 Feb; 28(2):192-202. PubMed ID: 29273625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long distance relationships: enhancer-promoter communication and dynamic gene transcription.
    Marsman J; Horsfield JA
    Biochim Biophys Acta; 2012; 1819(11-12):1217-27. PubMed ID: 23124110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation associated modules reflect 3D genome modularity associated with chromatin activity.
    Zheng L; Wang W
    Nat Commun; 2022 Sep; 13(1):5281. PubMed ID: 36075900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver.
    Matthews BJ; Waxman DJ
    Elife; 2018 May; 7():. PubMed ID: 29757144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TADs: Dynamic structures to create stable regulatory functions.
    da Costa-Nunes JA; Noordermeer D
    Curr Opin Struct Biol; 2023 Aug; 81():102622. PubMed ID: 37302180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CTCF and transcription influence chromatin structure re-configuration after mitosis.
    Zhang H; Lam J; Zhang D; Lan Y; Vermunt MW; Keller CA; Giardine B; Hardison RC; Blobel GA
    Nat Commun; 2021 Aug; 12(1):5157. PubMed ID: 34453048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minor Loops in Major Folds: Enhancer-Promoter Looping, Chromatin Restructuring, and Their Association with Transcriptional Regulation and Disease.
    Matharu N; Ahituv N
    PLoS Genet; 2015 Dec; 11(12):e1005640. PubMed ID: 26632825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extensive Heterogeneity and Intrinsic Variation in Spatial Genome Organization.
    Finn EH; Pegoraro G; Brandão HB; Valton AL; Oomen ME; Dekker J; Mirny L; Misteli T
    Cell; 2019 Mar; 176(6):1502-1515.e10. PubMed ID: 30799036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of transcription in shaping the spatial organization of the genome.
    van Steensel B; Furlong EEM
    Nat Rev Mol Cell Biol; 2019 Jun; 20(6):327-337. PubMed ID: 30886333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine and Deep Learning Methods for Predicting 3D Genome Organization.
    Wall BPG; Nguyen M; Harrell JC; Dozmorov MG
    Methods Mol Biol; 2025; 2856():357-400. PubMed ID: 39283464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of DNA replication timing in the 3D genome.
    Marchal C; Sima J; Gilbert DM
    Nat Rev Mol Cell Biol; 2019 Dec; 20(12):721-737. PubMed ID: 31477886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in Chromatin Imaging at Kilobase-Scale Resolution.
    Boettiger A; Murphy S
    Trends Genet; 2020 Apr; 36(4):273-287. PubMed ID: 32007290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A tour of 3D genome with a focus on CTCF.
    Wang DC; Wang W; Zhang L; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes.
    Ringel AR; Szabo Q; Chiariello AM; Chudzik K; Schöpflin R; Rothe P; Mattei AL; Zehnder T; Harnett D; Laupert V; Bianco S; Hetzel S; Glaser J; Phan MHQ; Schindler M; Ibrahim DM; Paliou C; Esposito A; Prada-Medina CA; Haas SA; Giere P; Vingron M; Wittler L; Meissner A; Nicodemi M; Cavalli G; Bantignies F; Mundlos S; Robson MI
    Cell; 2022 Sep; 185(20):3689-3704.e21. PubMed ID: 36179666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.
    Glinsky GV
    Chromosome Res; 2018 Mar; 26(1-2):61-84. PubMed ID: 29335803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Many facades of CTCF unified by its coding for three-dimensional genome architecture.
    Wu Q; Liu P; Wang L
    J Genet Genomics; 2020 Aug; 47(8):407-424. PubMed ID: 33187878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The macro and micro of chromosome conformation capture.
    Goel VY; Hansen AS
    Wiley Interdiscip Rev Dev Biol; 2021 Nov; 10(6):e395. PubMed ID: 32987449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 61.