These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 30367310)
1. Boosted feature selectors: a case study on prediction P-gp inhibitors and substrates. Cerruela García G; García-Pedrajas N J Comput Aided Mol Des; 2018 Nov; 32(11):1273-1294. PubMed ID: 30367310 [TBL] [Abstract][Full Text] [Related]
3. Predicting Inhibitors for Multidrug Resistance Associated Protein-2 Transporter by Machine Learning Approach. Kharangarh S; Sandhu H; Tangadpalliwar S; Garg P Comb Chem High Throughput Screen; 2018; 21(8):557-566. PubMed ID: 30360705 [TBL] [Abstract][Full Text] [Related]
4. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches. Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046 [TBL] [Abstract][Full Text] [Related]
5. Filter feature selectors in the development of binary QSAR models. Cerruela García G; Pérez-Parras Toledano J; de Haro García A; García-Pedrajas N SAR QSAR Environ Res; 2019 May; 30(5):313-345. PubMed ID: 31112077 [TBL] [Abstract][Full Text] [Related]
6. Combined QSAR and molecule docking studies on predicting P-glycoprotein inhibitors. Tan W; Mei H; Chao L; Liu T; Pan X; Shu M; Yang L J Comput Aided Mol Des; 2013 Dec; 27(12):1067-73. PubMed ID: 24322389 [TBL] [Abstract][Full Text] [Related]
7. Structure-activity relationship: analyses of p-glycoprotein substrates and inhibitors. Wang RB; Kuo CL; Lien LL; Lien EJ J Clin Pharm Ther; 2003 Jun; 28(3):203-28. PubMed ID: 12795780 [TBL] [Abstract][Full Text] [Related]
8. Classification of Biodegradable Substances Using Balanced Random Trees and Boosted C5.0 Decision Trees. Elsayad AM; Nassef AM; Al-Dhaifallah M; Elsayad KA Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33322123 [TBL] [Abstract][Full Text] [Related]
9. Prediction of matrix metal proteinases-12 inhibitors by machine learning approaches. Li B; Hu L; Xue Y; Yang M; Huang L; Zhang Z; Liu J; Deng G J Biomol Struct Dyn; 2019 Jul; 37(10):2627-2640. PubMed ID: 30051748 [TBL] [Abstract][Full Text] [Related]
10. A Machine Learning-Based QSAR Model for Benzimidazole Derivatives as Corrosion Inhibitors by Incorporating Comprehensive Feature Selection. Liu Y; Guo Y; Wu W; Xiong Y; Sun C; Yuan L; Li M Interdiscip Sci; 2019 Dec; 11(4):738-747. PubMed ID: 31486019 [TBL] [Abstract][Full Text] [Related]
11. Binding Activity Prediction of Cyclin-Dependent Inhibitors. Saha I; Rak B; Bhowmick SS; Maulik U; Bhattacharjee D; Koch U; Lazniewski M; Plewczynski D J Chem Inf Model; 2015 Jul; 55(7):1469-82. PubMed ID: 26079845 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous Prediction of four ATP-binding Cassette Transporters' Substrates Using Multi-label QSAR. Aniceto N; Freitas AA; Bender A; Ghafourian T Mol Inform; 2016 Oct; 35(10):514-528. PubMed ID: 27582431 [TBL] [Abstract][Full Text] [Related]
14. Development of decision tree models for substrates, inhibitors, and inducers of p-glycoprotein. Hammann F; Gutmann H; Jecklin U; Maunz A; Helma C; Drewe J Curr Drug Metab; 2009 May; 10(4):339-46. PubMed ID: 19519342 [TBL] [Abstract][Full Text] [Related]
15. Development of classification models for identifying "true" P-glycoprotein (P-gp) inhibitors through inhibition, ATPase activation and monolayer efflux assays. Rapposelli S; Coi A; Imbriani M; Bianucci AM Int J Mol Sci; 2012; 13(6):6924-6943. PubMed ID: 22837672 [TBL] [Abstract][Full Text] [Related]
16. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. Xue Y; Li ZR; Yap CW; Sun LZ; Chen X; Chen YZ J Chem Inf Comput Sci; 2004; 44(5):1630-8. PubMed ID: 15446820 [TBL] [Abstract][Full Text] [Related]
17. Prediction of P-glycoprotein substrates by a support vector machine approach. Xue Y; Yap CW; Sun LZ; Cao ZW; Wang JF; Chen YZ J Chem Inf Comput Sci; 2004; 44(4):1497-505. PubMed ID: 15272858 [TBL] [Abstract][Full Text] [Related]
18. PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine. Deng L; Pan J; Xu X; Yang W; Liu C; Liu H BMC Bioinformatics; 2018 Dec; 19(Suppl 19):522. PubMed ID: 30598073 [TBL] [Abstract][Full Text] [Related]
19. Stable feature selection for clinical prediction: exploiting ICD tree structure using Tree-Lasso. Kamkar I; Gupta SK; Phung D; Venkatesh S J Biomed Inform; 2015 Feb; 53():277-90. PubMed ID: 25500636 [TBL] [Abstract][Full Text] [Related]
20. In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method. Li BK; Cong Y; Yang XG; Xue Y; Chen YZ Comput Biol Med; 2013 May; 43(4):395-404. PubMed ID: 23402937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]