BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30367406)

  • 1. Electrical Pulse Stimulation of Primary Human Skeletal Muscle Cells.
    Nikolić N; Aas V
    Methods Mol Biol; 2019; 1889():17-24. PubMed ID: 30367406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of myotube contraction using electrical pulse stimulation for bio-actuator.
    Yamasaki K; Hayashi H; Nishiyama K; Kobayashi H; Uto S; Kondo H; Hashimoto S; Fujisato T
    J Artif Organs; 2009; 12(2):131-7. PubMed ID: 19536631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired enhancement of insulin action in cultured skeletal muscle cells from insulin resistant type 2 diabetic patients in response to contraction using electrical pulse stimulation.
    Al-Bayati A; Brown A; Walker M
    J Diabetes Complications; 2019 Dec; 33(12):107412. PubMed ID: 31575461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and performance of an electrical stimulator for long-term contraction of cultured muscle cells.
    Marotta M; Bragós R; Gómez-Foix AM
    Biotechniques; 2004 Jan; 36(1):68-73. PubMed ID: 14740487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical pulse stimulation: an in vitro exercise model for the induction of human skeletal muscle cell hypertrophy. A proof-of-concept study.
    Tarum J; Folkesson M; Atherton PJ; Kadi F
    Exp Physiol; 2017 Nov; 102(11):1405-1413. PubMed ID: 28861930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innervation and electrical pulse stimulation - in vitro effects on human skeletal muscle cells.
    Marš T; Miš K; Meznarič M; Prpar Mihevc S; Jan V; Haugen F; Rogelj B; Rustan AC; Thoresen GH; Pirkmajer S; Nikolić N
    Appl Physiol Nutr Metab; 2021 Apr; 46(4):299-308. PubMed ID: 32758102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical pulse stimulation decreases electrochemical Na
    Danilov K; Sidorenko S; Milovanova K; Klimanova E; Kapilevich LV; Orlov SN
    Biochem Biophys Res Commun; 2017 Nov; 493(2):875-878. PubMed ID: 28958945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an acute muscle contraction model using cultured C2C12 myotubes.
    Manabe Y; Miyatake S; Takagi M; Nakamura M; Okeda A; Nakano T; Hirshman MF; Goodyear LJ; Fujii NL
    PLoS One; 2012; 7(12):e52592. PubMed ID: 23300713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of differentiation, de novo innervation, and electrical pulse stimulation on mRNA and protein expression of Na+,K+-ATPase, FXYD1, and FXYD5 in cultured human skeletal muscle cells.
    Jan V; Miš K; Nikolic N; Dolinar K; Petrič M; Bone A; Thoresen GH; Rustan AC; Marš T; Chibalin AV; Pirkmajer S
    PLoS One; 2021; 16(2):e0247377. PubMed ID: 33635930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable bio-microactuator powered by muscle cells.
    Akiyama Y; Furukawa Y; Morishima K
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6565-8. PubMed ID: 17959454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes.
    Fujita H; Nedachi T; Kanzaki M
    Exp Cell Res; 2007 May; 313(9):1853-65. PubMed ID: 17425954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical stimulation of microengineered skeletal muscle tissue: Effect of stimulus parameters on myotube contractility and maturation.
    Banan Sadeghian R; Ebrahimi M; Salehi S
    J Tissue Eng Regen Med; 2018 Apr; 12(4):912-922. PubMed ID: 28622706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical pulse stimulation-induced tetanic exercise simulation increases the secretion of extracellular vesicles from C2C12 myotubes.
    Murata A; Akiyama H; Honda H; Shimizu K
    Biochem Biophys Res Commun; 2023 Sep; 672():177-184. PubMed ID: 37354611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical pulse stimulation induces GLUT4 translocation in C
    Li Z; Yue Y; Hu F; Zhang C; Ma X; Li N; Qiu L; Fu M; Chen L; Yao Z; Bilan PJ; Klip A; Niu W
    Am J Physiol Endocrinol Metab; 2018 May; 314(5):E478-E493. PubMed ID: 29089333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of C2C12 Differentiation and Control of the Beating Dynamics of Contractile Cells for a Muscle-Driven Biosyncretic Crawler by Electrical Stimulation.
    Liu L; Zhang C; Wang W; Xi N; Wang Y
    Soft Robot; 2018 Dec; 5(6):748-760. PubMed ID: 30277855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically stimulated contractile activity-induced transcriptomic responses and metabolic remodeling in C
    Tamura Y; Kouzaki K; Kotani T; Nakazato K
    Am J Physiol Cell Physiol; 2020 Dec; 319(6):C1029-C1044. PubMed ID: 32936700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct Adaptations of Mitochondrial Dynamics to Electrical Pulse Stimulation in Lean and Severely Obese Primary Myotubes.
    Kugler BA; Deng W; Francois B; Anderson M; Hinkley JM; Houmard JA; Gona PN; Zou K
    Med Sci Sports Exerc; 2021 Jun; 53(6):1151-1160. PubMed ID: 33315810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feeder-supported in vitro exercise model using human satellite cells from patients with sporadic inclusion body myositis.
    Li Y; Chen W; Ogawa K; Koide M; Takahashi T; Hagiwara Y; Itoi E; Aizawa T; Tsuchiya M; Izumi R; Suzuki N; Aoki M; Kanzaki M
    Sci Rep; 2022 Jan; 12(1):1082. PubMed ID: 35058512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle.
    Nedachi T; Fujita H; Kanzaki M
    Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1191-204. PubMed ID: 18780777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro exercise model using contractile human and mouse hybrid myotubes.
    Chen W; Nyasha MR; Koide M; Tsuchiya M; Suzuki N; Hagiwara Y; Aoki M; Kanzaki M
    Sci Rep; 2019 Aug; 9(1):11914. PubMed ID: 31417107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.