These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30367409)

  • 1. Exercising Bioengineered Skeletal Muscle In Vitro: Biopsy to Bioreactor.
    Turner DC; Kasper AM; Seaborne RA; Brown AD; Close GL; Murphy M; Stewart CE; Martin NRW; Sharples AP
    Methods Mol Biol; 2019; 1889():55-79. PubMed ID: 30367409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation.
    Kasper AM; Turner DC; Martin NRW; Sharples AP
    J Cell Physiol; 2018 Mar; 233(3):1985-1998. PubMed ID: 28158895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical loading of bioengineered skeletal muscle in vitro recapitulates gene expression signatures of resistance exercise in vivo.
    Turner DC; Gorski PP; Seaborne RA; Viggars M; Murphy M; Jarvis JC; Martin NRW; Stewart CE; Sharples AP
    J Cell Physiol; 2021 Sep; 236(9):6534-6547. PubMed ID: 33586196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling in vivo skeletal muscle ageing in vitro using three-dimensional bioengineered constructs.
    Sharples AP; Player DJ; Martin NR; Mudera V; Stewart CE; Lewis MP
    Aging Cell; 2012 Dec; 11(6):986-95. PubMed ID: 22882433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a novel bioreactor system for 3D cellular mechanobiology studies.
    Cook CA; Huri PY; Ginn BP; Gilbert-Honick J; Somers SM; Temple JP; Mao HQ; Grayson WL
    Biotechnol Bioeng; 2016 Aug; 113(8):1825-37. PubMed ID: 26825810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation.
    Ito A; Yamamoto Y; Sato M; Ikeda K; Yamamoto M; Fujita H; Nagamori E; Kawabe Y; Kamihira M
    Sci Rep; 2014 Apr; 4():4781. PubMed ID: 24759171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic mechanical preconditioning improves engineered muscle contraction.
    Moon du G; Christ G; Stitzel JD; Atala A; Yoo JJ
    Tissue Eng Part A; 2008 Apr; 14(4):473-82. PubMed ID: 18399787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creating homogenous strain distribution within 3D cell-encapsulated constructs using a simple and cost-effective uniaxial tensile bioreactor: Design and validation study.
    Subramanian G; Elsaadany M; Bialorucki C; Yildirim-Ayan E
    Biotechnol Bioeng; 2017 Aug; 114(8):1878-1887. PubMed ID: 28425561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered Human Contractile Myofiber Sheets as a Platform for Studies of Skeletal Muscle Physiology.
    Takahashi H; Shimizu T; Okano T
    Sci Rep; 2018 Sep; 8(1):13932. PubMed ID: 30224737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic mechanical stimulation favors myosin heavy chain accumulation in engineered skeletal muscle constructs.
    Candiani G; Riboldi SA; Sadr N; Lorenzoni S; Neuenschwander P; Montevecchi FM; Mantero S
    J Appl Biomater Biomech; 2010; 8(2):68-75. PubMed ID: 20740468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a human skeletal micro muscle platform with pacing capabilities.
    Mills RJ; Parker BL; Monnot P; Needham EJ; Vivien CJ; Ferguson C; Parton RG; James DE; Porrello ER; Hudson JE
    Biomaterials; 2019 Apr; 198():217-227. PubMed ID: 30527761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors That Affect Tissue-Engineered Skeletal Muscle Function and Physiology.
    Khodabukus A; Baar K
    Cells Tissues Organs; 2016; 202(3-4):159-168. PubMed ID: 27825147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical pulse stimulation of cultured skeletal muscle cells as a model for in vitro exercise - possibilities and limitations.
    Nikolić N; Görgens SW; Thoresen GH; Aas V; Eckel J; Eckardt K
    Acta Physiol (Oxf); 2017 Jul; 220(3):310-331. PubMed ID: 27863008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges.
    Duffy RM; Feinberg AW
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(2):178-95. PubMed ID: 24319010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle.
    Birla RK; Huang YC; Dennis RG
    Tissue Eng; 2007 Sep; 13(9):2239-48. PubMed ID: 17590151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical Stimulation for Engineering Functional Skeletal Muscle.
    Somers SM; Spector AA; DiGirolamo DJ; Grayson WL
    Tissue Eng Part B Rev; 2017 Aug; 23(4):362-372. PubMed ID: 28401807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioreactors for guiding muscle tissue growth and development.
    Dennis RG; Smith B; Philp A; Donnelly K; Baar K
    Adv Biochem Eng Biotechnol; 2009; 112():39-79. PubMed ID: 19290497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mimicking exercise in vitro: effects of myotube contractions and mechanical stretch on omics.
    Lautaoja JH; Turner DC; Sharples AP; Kivelä R; Pekkala S; Hulmi JJ; Ylä-Outinen L
    Am J Physiol Cell Physiol; 2023 Apr; 324(4):C886-C892. PubMed ID: 36881402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanobiology in Tendon, Ligament, and Skeletal Muscle Tissue Engineering.
    Bramson MTK; Van Houten SK; Corr DT
    J Biomech Eng; 2021 Jul; 143(7):. PubMed ID: 33537704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.