BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30367422)

  • 21. Quantitative proteome and phosphoproteome analysis of human pluripotent stem cells.
    Muñoz J; Heck AJ
    Methods Mol Biol; 2011; 767():297-312. PubMed ID: 21822884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry.
    Manes NP; Dong L; Zhou W; Du X; Reghu N; Kool AC; Choi D; Bailey CL; Petricoin EF; Liotta LA; Popov SG
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.000927. PubMed ID: 21189417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET).
    Nie S; Dai J; Ning ZB; Cao XJ; Sheng QH; Zeng R
    J Proteome Res; 2010 Sep; 9(9):4585-94. PubMed ID: 20681634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Throughput Characterization of Histidine Phosphorylation Sites Using UPAX and Tandem Mass Spectrometry.
    Hardman G; Eyers CE
    Methods Mol Biol; 2020; 2077():225-235. PubMed ID: 31707662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative Proteome and Phosphoproteome Profiling in Magnaporthe oryzae.
    Michna T; Tenzer S
    Methods Mol Biol; 2021; 2356():109-119. PubMed ID: 34236681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Rapid and Universal Workflow for Label-Free-Quantitation-Based Proteomic and Phosphoproteomic Studies in Cereals.
    He M; Wang J; Herold S; Xi L; Schulze WX
    Curr Protoc; 2022 Jun; 2(6):e425. PubMed ID: 35674286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative phosphoproteomic analysis of porcine muscle within 24 h postmortem.
    Huang H; Larsen MR; Palmisano G; Dai J; Lametsch R
    J Proteomics; 2014 Jun; 106():125-39. PubMed ID: 24769528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry.
    Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF
    Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells.
    Bridon G; Bonneil E; Muratore-Schroeder T; Caron-Lizotte O; Thibault P
    J Proteome Res; 2012 Feb; 11(2):927-40. PubMed ID: 22059388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isoelectric point-based fractionation by HiRIEF coupled to LC-MS allows for in-depth quantitative analysis of the phosphoproteome.
    Panizza E; Branca RMM; Oliviusson P; Orre LM; Lehtiö J
    Sci Rep; 2017 Jul; 7(1):4513. PubMed ID: 28674419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiplexed quantitative phosphoproteomics of cell line and tissue samples.
    Kreuzer J; Edwards A; Haas W
    Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two Birds with One Stone: Parallel Quantification of Proteome and Phosphoproteome Using iTRAQ.
    Solari FA; Kollipara L; Sickmann A; Zahedi RP
    Methods Mol Biol; 2016; 1394():25-41. PubMed ID: 26700039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly reproducible improved label-free quantitative analysis of cellular phosphoproteome by optimization of LC-MS/MS gradient and analytical column construction.
    Ahsan N; Belmont J; Chen Z; Clifton JG; Salomon AR
    J Proteomics; 2017 Aug; 165():69-74. PubMed ID: 28634120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells.
    Henry M; Coleman O; Prashant ; Clynes M; Meleady P
    Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative Phosphoproteomic Analysis of Brain Tissues.
    Bai B; Tan H; Peng J
    Methods Mol Biol; 2017; 1598():199-211. PubMed ID: 28508362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Examining Cellular Responses to Kinase Drug Inhibition Through Phosphoproteome Mapping of Substrates.
    Bucio-Noble D; Semaan C; Molloy MP
    Methods Mol Biol; 2019; 1888():141-152. PubMed ID: 30519945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructured TiO₂ thin films for phosphoproteomics studies with MALDI mass spectrometry.
    Torta F; Fusi M; Casari CS; Bassi AL; Bachi A
    Methods Mol Biol; 2011; 790():173-81. PubMed ID: 21948414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mass Spectrometry-Based Proteomics for Quantifying DNA Damage-Induced Phosphorylation.
    Borisova ME; Wagner SA; Beli P
    Methods Mol Biol; 2017; 1599():215-227. PubMed ID: 28477122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sample Collection Method Bias Effects in Quantitative Phosphoproteomics.
    Kanshin E; Tyers M; Thibault P
    J Proteome Res; 2015 Jul; 14(7):2998-3004. PubMed ID: 26040406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Universal Sample Preparation Workflow for Plant Phosphoproteomic Profiling.
    Hsu CC; Arrington JV; Tao WA
    Methods Mol Biol; 2021; 2358():93-103. PubMed ID: 34270048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.