These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30367598)

  • 1. BMCMDA: a novel model for predicting human microbe-disease associations via binary matrix completion.
    Shi JY; Huang H; Zhang YN; Cao JB; Yiu SM
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):281. PubMed ID: 30367598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases.
    Chen X; Huang YA; You ZH; Yan GY; Wang XS
    Bioinformatics; 2017 Mar; 33(5):733-739. PubMed ID: 28025197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MCHMDA:Predicting Microbe-Disease Associations Based on Similarities and Low-Rank Matrix Completion.
    Yan C; Duan G; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):611-620. PubMed ID: 31295117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BRWMDA:Predicting Microbe-Disease Associations Based on Similarities and Bi-Random Walk on Disease and Microbe Networks.
    Yan C; Duan G; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1595-1604. PubMed ID: 30932846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MNNMDA: Predicting human microbe-disease association via a method to minimize matrix nuclear norm.
    Liu H; Bing P; Zhang M; Tian G; Ma J; Li H; Bao M; He K; He J; He B; Yang J
    Comput Struct Biotechnol J; 2023; 21():1414-1423. PubMed ID: 36824227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting human microbe-disease associations via graph attention networks with inductive matrix completion.
    Long Y; Luo J; Zhang Y; Xia Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32725163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WMGHMDA: a novel weighted meta-graph-based model for predicting human microbe-disease association on heterogeneous information network.
    Long Y; Luo J
    BMC Bioinformatics; 2019 Nov; 20(1):541. PubMed ID: 31675979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MDADP: A Webserver Integrating Database and Prediction Tools for Microbe-Disease Associations.
    Wang L; Li H; Wang Y; Tan Y; Chen Z; Pei T; Zou Q
    IEEE J Biomed Health Inform; 2022 Jul; 26(7):3427-3434. PubMed ID: 35254998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting potential microbe-disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network.
    Peng L; Huang L; Tian G; Wu Y; Li G; Cao J; Wang P; Li Z; Duan L
    Front Microbiol; 2023; 14():1244527. PubMed ID: 37789848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SAELGMDA: Identifying human microbe-disease associations based on sparse autoencoder and LightGBM.
    Wang F; Yang H; Wu Y; Peng L; Li X
    Front Microbiol; 2023; 14():1207209. PubMed ID: 37415823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A survey on predicting microbe-disease associations: biological data and computational methods.
    Wen Z; Yan C; Duan G; Li S; Wu FX; Wang J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NPCMF: Nearest Profile-based Collaborative Matrix Factorization method for predicting miRNA-disease associations.
    Gao YL; Cui Z; Liu JX; Wang J; Zheng CH
    BMC Bioinformatics; 2019 Jun; 20(1):353. PubMed ID: 31234797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting potential microbe-disease associations based on multi-source features and deep learning.
    Wang L; Wang Y; Xuan C; Zhang B; Wu H; Gao J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37406190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities.
    Xu D; Xu H; Zhang Y; Wang M; Chen W; Gao R
    J Transl Med; 2021 Feb; 19(1):66. PubMed ID: 33579301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach for predicting microbe-disease associations by bi-random walk on the heterogeneous network.
    Zou S; Zhang J; Zhang Z
    PLoS One; 2017; 12(9):e0184394. PubMed ID: 28880967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CMFHMDA: a prediction framework for human disease-microbe associations based on cross-domain matrix factorization.
    Chen J; Tao R; Qiu Y; Yuan Q
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39327064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GBDR: a Bayesian model for precise prediction of pathogenic microorganisms using 16S rRNA gene sequences.
    Huang YA; Huang ZA; Li JQ; You ZH; Wang L; Yi HC; Yu CQ
    BMC Genomics; 2022 Mar; 22(Suppl 1):916. PubMed ID: 35296232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MVGCNMDA: Multi-view Graph Augmentation Convolutional Network for Uncovering Disease-Related Microbes.
    Hua M; Yu S; Liu T; Yang X; Wang H
    Interdiscip Sci; 2022 Sep; 14(3):669-682. PubMed ID: 35428964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting potential microbe-disease associations based on dual branch graph convolutional network.
    Chen J; Zhu Y; Yuan Q
    J Cell Mol Med; 2024 Aug; 28(15):e18571. PubMed ID: 39086148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NTSHMDA: Prediction of Human Microbe-Disease Association Based on Random Walk by Integrating Network Topological Similarity.
    Luo J; Long Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1341-1351. PubMed ID: 30489271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.