BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 30367954)

  • 1. Restoring electrical connection using a conductive biomaterial provides a new therapeutic strategy for rats with spinal cord injury.
    Shu B; Sun X; Liu R; Jiang F; Yu H; Xu N; An Y
    Neurosci Lett; 2019 Jan; 692():33-40. PubMed ID: 30367954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polypyrrole/polylactic acid nanofibrous scaffold cotransplanted with bone marrow stromal cells promotes the functional recovery of spinal cord injury in rats.
    Raynald ; Shu B; Liu XB; Zhou JF; Huang H; Wang JY; Sun XD; Qin C; An YH
    CNS Neurosci Ther; 2019 Sep; 25(9):951-964. PubMed ID: 31486601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PHBV/PLA/Col-Based Nanofibrous Scaffolds Promote Recovery of Locomotor Function by Decreasing Reactive Astrogliosis in a Hemisection Spinal Cord Injury Rat Model.
    Zhao T; Jing Y; Zhou X; Wang J; Huang X; Gao L; Zhu Y; Wang L; Gou Z; Liang C; Xu K; Li F; Chen Q
    J Biomed Nanotechnol; 2018 Nov; 14(11):1921-1933. PubMed ID: 30165928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury.
    Zhang S; Wang XJ; Li WS; Xu XL; Hu JB; Kang XQ; Qi J; Ying XY; You J; Du YZ
    Acta Biomater; 2018 Sep; 77():15-27. PubMed ID: 30126591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth.
    Sudwilai T; Ng JJ; Boonkrai C; Israsena N; Chuangchote S; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(12):1240-52. PubMed ID: 24933469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implantation of nanofibrous silk scaffolds seeded with bone marrow stromal cells promotes spinal cord regeneration (6686 words).
    Wang XH; Tang XC; Li X; Qin JZ; Zhong WT; Wu P; Zhang F; Shen YX; Dai TT
    Artif Cells Nanomed Biotechnol; 2021 Dec; 49(1):699-708. PubMed ID: 34882059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of motor function after traumatic spinal cord injury by using plasma-synthesized polypyrrole/iodine application in combination with a mixed rehabilitation scheme.
    Sánchez-Torres S; Díaz-Ruíz A; Ríos C; Olayo MG; Cruz GJ; Olayo R; Morales J; Mondragón-Lozano R; Fabela-Sánchez O; Orozco-Barrios C; Coyoy-Salgado A; Orozco-Suárez S; González-Ruiz C; Álvarez-Mejía L; Morales-Guadarrama A; Buzoianu-Anguiano V; Damián-Matsumura P; Salgado-Ceballos H
    J Mater Sci Mater Med; 2020 Jun; 31(7):58. PubMed ID: 32607849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Olfactory ensheathing cells seeded decellularized scaffold promotes axonal regeneration in spinal cord injury rats.
    Yu F; Li P; Du S; Lui KW; Lin Y; Chen L; Ren Q; Wang J; Mei J; Xiao J; Zhu J
    J Biomed Mater Res A; 2021 May; 109(5):779-787. PubMed ID: 32720459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on Polycaprolactone-Gelatin Composite Scaffolds Carrying Nerve Growth Factor for the Repair of Spinal Cord Injury.
    Yang S; Zhang N; Dong Y; Zhang X
    Dis Markers; 2022; 2022():3880687. PubMed ID: 36212178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats.
    Kaneko A; Matsushita A; Sankai Y
    Biomed Mater; 2015 Jan; 10(1):015008. PubMed ID: 25585935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application.
    Zarei M; Samimi A; Khorram M; Abdi MM; Golestaneh SI
    Int J Biol Macromol; 2021 Jan; 168():175-186. PubMed ID: 33309657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.
    Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y
    J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells.
    Tian L; Prabhakaran MP; Hu J; Chen M; Besenbacher F; Ramakrishna S
    Colloids Surf B Biointerfaces; 2016 Sep; 145():420-429. PubMed ID: 27232305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Neurite Outgrowth on a Multiblock Conductive Nerve Scaffold with Self-Powered Electrical Stimulation.
    Sun Y; Quan Q; Meng H; Zheng Y; Peng J; Hu Y; Feng Z; Sang X; Qiao K; He W; Chi X; Zhao L
    Adv Healthc Mater; 2019 May; 8(10):e1900127. PubMed ID: 30941919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair.
    Li X; Fan C; Xiao Z; Zhao Y; Zhang H; Sun J; Zhuang Y; Wu X; Shi J; Chen Y; Dai J
    Biomaterials; 2018 Nov; 183():114-127. PubMed ID: 30153562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair.
    Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J
    Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transplantation of neural scaffolds consisting of dermal fibroblast-reprogrammed neurons and 3D silk fibrous materials promotes the repair of spinal cord injury.
    Hu Y; Zhang F; Zhong W; Liu Y; He Q; Yang M; Chen H; Xu X; Bian K; Xu J; Li J; Shen Y; Zhang H
    J Mater Chem B; 2019 Dec; 7(47):7525-7539. PubMed ID: 31720683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trimethylene carbonate-caprolactone conduit with poly-p-dioxanone microfilaments to promote regeneration after spinal cord injury.
    Novikova LN; Kolar MK; Kingham PJ; Ullrich A; Oberhoffner S; Renardy M; Doser M; Müller E; Wiberg M; Novikov LN
    Acta Biomater; 2018 Jan; 66():177-191. PubMed ID: 29174588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promotion of spinal cord axon regeneration by 3D nanofibrous core-sheath scaffolds.
    Zamani F; Amani-Tehran M; Latifi M; Shokrgozar MA; Zaminy A
    J Biomed Mater Res A; 2014 Feb; 102(2):506-13. PubMed ID: 23533050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of completely transected spinal cord using scaffold of poly(D,L-lactide-co-glycolide)/small intestinal submucosa seeded with rat bone marrow stem cells.
    Kang KN; Lee JY; Kim DY; Lee BN; Ahn HH; Lee B; Khang G; Park SR; Min BH; Kim JH; Lee HB; Kim MS
    Tissue Eng Part A; 2011 Sep; 17(17-18):2143-52. PubMed ID: 21529281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.