These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30368088)

  • 61. [Application of predictive microbiology in fungi growth and mycotoxin production].
    Wang W; Yu H; Li F
    Wei Sheng Yan Jiu; 2009 Nov; 38(6):753-6. PubMed ID: 20047240
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A Stochastic Model to Assess the Effect of Meat Inspection Practices on the Contamination of the Pig Carcasses.
    de Freitas Costa E; Corbellini LG; da Silva APSP; Nauta M
    Risk Anal; 2017 Oct; 37(10):1849-1864. PubMed ID: 27996166
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Risk assessment for infectious foodborne diseases: a priority with problems.
    Potter ME; Brudney JL
    J Agromedicine; 2004; 9(2):59-69. PubMed ID: 19785206
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [New approach for managing microbial risks in food].
    Augustin JC
    Bull Acad Natl Med; 2015; 199(4-5):639-48; discussion 648-50. PubMed ID: 27509684
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The STARTEC Decision Support Tool for Better Tradeoffs between Food Safety, Quality, Nutrition, and Costs in Production of Advanced Ready-to-Eat Foods.
    Skjerdal T; Gefferth A; Spajic M; Estanga EG; De Cesare A; Vitali S; Pasquali F; Bovo F; Manfreda G; Mancusi R; Trevisiani M; Tessema GT; Fagereng T; Moen LH; Lyshaug L; Koidis A; Delgado-Pando G; Stratakos AC; Boeri M; From C; Syed H; Muccioli M; Mulazzani R; Halbert C
    Biomed Res Int; 2017; 2017():6353510. PubMed ID: 29457031
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Predictive microbiology. Toward an operational tool to help our appraisal].
    Jolivet P
    Ann Pharm Fr; 2000 Dec; 58(6 Suppl):475-81. PubMed ID: 11148386
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Modelling microbial growth in structured foods: towards a unified approach.
    Wilson PD; Brocklehurst TF; Arino S; Thuault D; Jakobsen M; Lange M; Farkas J; Wimpenny JW; Van Impe JF
    Int J Food Microbiol; 2002 Mar; 73(2-3):275-89. PubMed ID: 11934035
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Quantitative risk assessment of Listeria monocytogenes in bulk cooked meat products].
    Tian J; Fan YX; Liu XM
    Zhonghua Yu Fang Yi Xue Za Zhi; 2011 Jun; 45(6):537-42. PubMed ID: 21914338
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characterization of the Human Risk of Salmonellosis Related to Consumption of Pork Products in Different E.U. Countries Based on a QMRA.
    Vigre H; Barfoed K; Swart AN; Simons RR; Hill AA; Snary EL; Hald T
    Risk Anal; 2016 Mar; 36(3):531-45. PubMed ID: 26857423
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Antimicrobial activity of whey protein isolate edible films with essential oils against food spoilers and foodborne pathogens.
    Fernández-Pan I; Royo M; Ignacio Maté J
    J Food Sci; 2012 Jul; 77(7):M383-90. PubMed ID: 22671770
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Next generation of microbiological risk assessment: Potential of omics data for exposure assessment.
    den Besten HMW; Amézquita A; Bover-Cid S; Dagnas S; Ellouze M; Guillou S; Nychas G; O'Mahony C; Pérez-Rodriguez F; Membré JM
    Int J Food Microbiol; 2018 Dec; 287():18-27. PubMed ID: 29032838
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Potential application of quantitative microbiological risk assessment techniques to an aseptic-UHT process in the food industry.
    Pujol L; Albert I; Johnson NB; Membré JM
    Int J Food Microbiol; 2013 Apr; 162(3):283-96. PubMed ID: 23454820
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Food safety objectives should integrate the variability of the concentration of pathogen.
    Rieu E; Duhem K; Vindel E; Sanaa M
    Risk Anal; 2007 Apr; 27(2):373-86. PubMed ID: 17511704
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Foodborne pathogens and their toxins.
    Martinović T; Andjelković U; Gajdošik MŠ; Rešetar D; Josić D
    J Proteomics; 2016 Sep; 147():226-235. PubMed ID: 27109345
    [TBL] [Abstract][Full Text] [Related]  

  • 75.
    Polese P; Torre MD; Stecchini ML
    Ital J Food Saf; 2018 Mar; 7(1):6943. PubMed ID: 29732330
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Framework for identification and collection of data useful for risk assessments of microbial foodborne or waterborne hazards: a report from the International Life Sciences Institute Research Foundation Advisory Committee on data collection for microbial risk assessment.
    Walls I;
    J Food Prot; 2007 Jul; 70(7):1744-51. PubMed ID: 17685354
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Modeling logistic performance in quantitative microbial risk assessment.
    Rijgersberg H; Tromp S; Jacxsens L; Uyttendaele M
    Risk Anal; 2010 Jan; 30(1):20-31. PubMed ID: 20055976
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Microbial risk assessment of staphylococcal food poisoning in Korean kimbab.
    Rho MJ; Schaffner DW
    Int J Food Microbiol; 2007 May; 116(3):332-8. PubMed ID: 17397955
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sensitivity analysis in quantitative microbial risk assessment.
    Zwieterin MH; van Gerwen SJ
    Int J Food Microbiol; 2000 Jul; 58(3):213-21. PubMed ID: 10939271
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Engineering modeling frameworks for microbial food safety at various scales.
    Ranjbaran M; Carciofi BAM; Datta AK
    Compr Rev Food Sci Food Saf; 2021 Sep; 20(5):4213-4249. PubMed ID: 34486219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.