These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30368184)

  • 1. Application of hardwood biochar as a reactive capping mat to stabilize mercury derived from contaminated floodplain soil and riverbank sediments.
    Wang AO; Ptacek CJ; Blowes DW; Gibson BD; Landis RC; Dyer JA; Ma J
    Sci Total Environ; 2019 Feb; 652():549-561. PubMed ID: 30368184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of multiple drying and rewetting events on biochar amendments for Hg stabilization in floodplain soil from South River, VA.
    Wang AO; Ptacek CJ; Mack EE; Blowes DW
    Chemosphere; 2021 Jan; 262():127794. PubMed ID: 32771706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of hardwood and sulfurized-hardwood biochars as amendments to floodplain soil from South River, VA, USA: Impacts of drying-rewetting on Hg removal.
    Wang AO; Ptacek CJ; Blowes DW; Finfrock YZ; Paktunc D; Mack EE
    Sci Total Environ; 2020 Apr; 712():136018. PubMed ID: 32050399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury distribution and speciation in biochar particles reacted with contaminated sediment up to 1030 days: A synchrotron-based study.
    Liu P; Ptacek CJ; Blowes DW; Finfrock YZ
    Sci Total Environ; 2019 Apr; 662():915-922. PubMed ID: 30708306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of mercury stabilization mechanisms by sulfurized biochars determined using X-ray absorption spectroscopy.
    Liu P; Ptacek CJ; Elena KMA; Blowes DW; Gould WD; Finfrock YZ; Wang AO; Landis RC
    J Hazard Mater; 2018 Apr; 347():114-122. PubMed ID: 29304450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy.
    Liu P; Ptacek CJ; Blowes DW; Landis RC
    J Hazard Mater; 2016 May; 308():233-42. PubMed ID: 26844404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of mercury in sediment by using biochars under reducing conditions.
    Liu P; Ptacek CJ; Blowes DW; Finfrock YZ; Gordon RA
    J Hazard Mater; 2017 Mar; 325():120-128. PubMed ID: 27930996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil.
    Beckers F; Awad YM; Beiyuan J; Abrigata J; Mothes S; Tsang DCW; Ok YS; Rinklebe J
    Environ Int; 2019 Jun; 127():276-290. PubMed ID: 30951944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activated Carbon and Biochar Reduce Mercury Methylation Potentials in Aquatic Sediments.
    Bussan DD; Sessums RF; Cizdziel JV
    Bull Environ Contam Toxicol; 2016 Apr; 96(4):536-9. PubMed ID: 26779648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the capacity of biochar to stabilize copper and lead in contaminated sediments using chemical and extraction methods.
    Wang M; Ren L; Wang D; Cai Z; Xia X; Ding A
    J Environ Sci (China); 2019 May; 79():91-99. PubMed ID: 30784468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobilization of mercury species under dynamic laboratory redox conditions in a contaminated floodplain soil as affected by biochar and sugar beet factory lime.
    Beckers F; Mothes S; Abrigata J; Zhao J; Gao Y; Rinklebe J
    Sci Total Environ; 2019 Jul; 672():604-617. PubMed ID: 30970288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review on utilization of biochar for metal-contaminated soil and sediment remediation.
    Wang M; Zhu Y; Cheng L; Andserson B; Zhao X; Wang D; Ding A
    J Environ Sci (China); 2018 Jan; 63():156-173. PubMed ID: 29406100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of biochar prepared from ethanol refinery by-products for Hg stabilization in floodplain soil: Impacts of drying and rewetting.
    Wang AO; Ptacek CJ; Paktunc D; Mack EE; Blowes DW
    Environ Pollut; 2020 Dec; 267():115396. PubMed ID: 32882459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A decision framework for possible remediation of contaminated sediments in the River Kymijoki, Finland.
    Verta M; Kiviranta H; Salo S; Malve O; Korhonen M; Verkasalo PK; Ruokojärvi P; Rossi E; Hanski A; Päätalo K; Vartiainen T
    Environ Sci Pollut Res Int; 2009 Jan; 16(1):95-105. PubMed ID: 18941816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activated carbon mitigates mercury and methylmercury bioavailability in contaminated sediments.
    Gilmour CC; Riedel GS; Riedel G; Kwon S; Landis R; Brown SS; Menzie CA; Ghosh U
    Environ Sci Technol; 2013 Nov; 47(22):13001-10. PubMed ID: 24156748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of sulfur-impregnated biochar amendment on microbial communities and mercury methylation in contaminated sediment.
    Bailon MX; Chaudhary DK; Jeon C; Ok YS; Hong Y
    J Hazard Mater; 2022 Sep; 438():129464. PubMed ID: 35999716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: sediment and water contamination of Lake Balkyldak and the River Irtysh.
    Ullrich SM; Ilyushchenko MA; Kamberov IM; Tanton TW
    Sci Total Environ; 2007 Aug; 381(1-3):1-16. PubMed ID: 17475310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 200 km-long mercury contamination of the Paglia and Tiber floodplain: Monitoring results and implications for environmental management.
    Rimondi V; Costagliola P; Lattanzi P; Morelli G; Cara G; Cencetti C; Fagotti C; Fredduzzi A; Marchetti G; Sconocchia A; Torricelli S
    Environ Pollut; 2019 Dec; 255(Pt 1):113191. PubMed ID: 31542668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury in the River Nura and its floodplain, Central Kazakhstan: II. Floodplain soils and riverbank silt deposits.
    Heaven S; Ilyushchenko MA; Kamberov IM; Politikov MI; Tanton TW; Ullrich SM; Yanin EP
    Sci Total Environ; 2000 Oct; 260(1-3):45-55. PubMed ID: 11032115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remediation effectiveness of Phyllostachys pubescens biochar in reducing the bioavailability and bioaccumulation of metals in sediments.
    Zhang C; Shan B; Zhu Y; Tang W
    Environ Pollut; 2018 Nov; 242(Pt B):1768-1776. PubMed ID: 30072221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.