These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Prevalence of brain and spinal cord inclusions, including dipeptide repeat proteins, in patients with the C9ORF72 hexanucleotide repeat expansion: a systematic neuropathological review. Schipper LJ; Raaphorst J; Aronica E; Baas F; de Haan R; de Visser M; Troost D Neuropathol Appl Neurobiol; 2016 Oct; 42(6):547-60. PubMed ID: 26373655 [TBL] [Abstract][Full Text] [Related]
3. Molecular Mechanisms of Neurodegeneration Related to Babić Leko M; Župunski V; Kirincich J; Smilović D; Hortobágyi T; Hof PR; Šimić G Behav Neurol; 2019; 2019():2909168. PubMed ID: 30774737 [TBL] [Abstract][Full Text] [Related]
4. Insights into disease mechanisms and potential therapeutics for C9orf72-related amyotrophic lateral sclerosis/frontotemporal dementia. Gagliardi D; Costamagna G; Taiana M; Andreoli L; Biella F; Bersani M; Bresolin N; Comi GP; Corti S Ageing Res Rev; 2020 Dec; 64():101172. PubMed ID: 32971256 [TBL] [Abstract][Full Text] [Related]
5. Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions. Todd TW; Petrucelli L J Neurochem; 2016 Aug; 138 Suppl 1():145-62. PubMed ID: 27016280 [TBL] [Abstract][Full Text] [Related]
6. Circadian sleep/wake-associated cells show dipeptide repeat protein aggregates in C9orf72-related ALS and FTLD cases. Dedeene L; Van Schoor E; Vandenberghe R; Van Damme P; Poesen K; Thal DR Acta Neuropathol Commun; 2019 Dec; 7(1):189. PubMed ID: 31791419 [TBL] [Abstract][Full Text] [Related]
7. Stable transgenic C9orf72 zebrafish model key aspects of the ALS/FTD phenotype and reveal novel pathological features. Shaw MP; Higginbottom A; McGown A; Castelli LM; James E; Hautbergue GM; Shaw PJ; Ramesh TM Acta Neuropathol Commun; 2018 Nov; 6(1):125. PubMed ID: 30454072 [TBL] [Abstract][Full Text] [Related]
8. Pathogenic Mechanisms and Therapy Development for C9orf72 Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Jiang J; Ravits J Neurotherapeutics; 2019 Oct; 16(4):1115-1132. PubMed ID: 31667754 [TBL] [Abstract][Full Text] [Related]
9. Clinical and neuropathological features of ALS/FTD with TIA1 mutations. Hirsch-Reinshagen V; Pottier C; Nicholson AM; Baker M; Hsiung GR; Krieger C; Sengdy P; Boylan KB; Dickson DW; Mesulam M; Weintraub S; Bigio E; Zinman L; Keith J; Rogaeva E; Zivkovic SA; Lacomis D; Taylor JP; Rademakers R; Mackenzie IRA Acta Neuropathol Commun; 2017 Dec; 5(1):96. PubMed ID: 29216908 [TBL] [Abstract][Full Text] [Related]
10. Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene. Wen X; Westergard T; Pasinelli P; Trotti D Neurosci Lett; 2017 Jan; 636():16-26. PubMed ID: 27619540 [TBL] [Abstract][Full Text] [Related]
11. Dipeptide repeat protein and TDP-43 pathology along the hypothalamic-pituitary axis in C9orf72 and non-C9orf72 ALS and FTLD-TDP cases. Dedeene L; Van Schoor E; Ospitalieri S; Ronisz A; Weishaupt JH; Otto M; Ludolph AC; Scheuerle A; Vandenberghe R; Van Damme P; Poesen K; Thal DR Acta Neuropathol; 2020 Nov; 140(5):777-781. PubMed ID: 32862270 [No Abstract] [Full Text] [Related]
12. Glial Cell Dysfunction in Ghasemi M; Keyhanian K; Douthwright C Cells; 2021 Jan; 10(2):. PubMed ID: 33525344 [TBL] [Abstract][Full Text] [Related]
13. Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Nana AL; Sidhu M; Gaus SE; Hwang JL; Li L; Park Y; Kim EJ; Pasquini L; Allen IE; Rankin KP; Toller G; Kramer JH; Geschwind DH; Coppola G; Huang EJ; Grinberg LT; Miller BL; Seeley WW Acta Neuropathol; 2019 Jan; 137(1):27-46. PubMed ID: 30511086 [TBL] [Abstract][Full Text] [Related]
14. Screening for the C9ORF72 repeat expansion in a greek frontotemporal dementia cohort. Kartanou C; Karadima G; Koutsis G; Breza M; Papageorgiou SG; Paraskevas GP; Kapaki E; Panas M Amyotroph Lateral Scler Frontotemporal Degener; 2018 Feb; 19(1-2):152-154. PubMed ID: 29166782 [TBL] [Abstract][Full Text] [Related]
15. Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Chew J; Cook C; Gendron TF; Jansen-West K; Del Rosso G; Daughrity LM; Castanedes-Casey M; Kurti A; Stankowski JN; Disney MD; Rothstein JD; Dickson DW; Fryer JD; Zhang YJ; Petrucelli L Mol Neurodegener; 2019 Feb; 14(1):9. PubMed ID: 30767771 [TBL] [Abstract][Full Text] [Related]
16. RNA-mediated toxicity in C9orf72 ALS and FTD. McEachin ZT; Parameswaran J; Raj N; Bassell GJ; Jiang J Neurobiol Dis; 2020 Nov; 145():105055. PubMed ID: 32829028 [TBL] [Abstract][Full Text] [Related]
17. Role of the C9ORF72 Gene in the Pathogenesis of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Hao Z; Wang R; Ren H; Wang G Neurosci Bull; 2020 Sep; 36(9):1057-1070. PubMed ID: 32860626 [TBL] [Abstract][Full Text] [Related]
18. Multiple variants in families with amyotrophic lateral sclerosis and frontotemporal dementia related to C9orf72 repeat expansion: further observations on their oligogenic nature. Giannoccaro MP; Bartoletti-Stella A; Piras S; Pession A; De Massis P; Oppi F; Stanzani-Maserati M; Pasini E; Baiardi S; Avoni P; Parchi P; Liguori R; Capellari S J Neurol; 2017 Jul; 264(7):1426-1433. PubMed ID: 28620717 [TBL] [Abstract][Full Text] [Related]
19. [Impact of C9orf72 on Japanese Patients with Amytrophic Lateral Sclerosis (ALS)/Frontotemporal Dementia (FTD)]. Tomiyama H Brain Nerve; 2019 Nov; 71(11):1190-1208. PubMed ID: 31722305 [TBL] [Abstract][Full Text] [Related]
20. There has been an awakening: Emerging mechanisms of C9orf72 mutations in FTD/ALS. Gitler AD; Tsuiji H Brain Res; 2016 Sep; 1647():19-29. PubMed ID: 27059391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]