These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 30368573)
1. Cadmium Accumulation and Tolerance in Seven Ornamental Willow Genotypes. Yang W; Wu F; Ding Z; Zhang X; Zhao F; Wang Y; Yang X Bull Environ Contam Toxicol; 2018 Nov; 101(5):644-650. PubMed ID: 30368573 [TBL] [Abstract][Full Text] [Related]
2. Growth, accumulation, and antioxidative responses of two Salix genotypes exposed to cadmium and lead in hydroponic culture. Xu X; Yang B; Qin G; Wang H; Zhu Y; Zhang K; Yang H Environ Sci Pollut Res Int; 2019 Jul; 26(19):19770-19784. PubMed ID: 31090001 [TBL] [Abstract][Full Text] [Related]
3. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723 [TBL] [Abstract][Full Text] [Related]
4. Assessment of the capability of cadmium accumulation and translocation among 31 willows: four patterns of willow biomass variation response to cadmium. Song X; Guo N; Yu R; Huang R; Zhang K; Chen Q; Tao J Environ Sci Pollut Res Int; 2023 Jul; 30(31):76735-76745. PubMed ID: 37247151 [TBL] [Abstract][Full Text] [Related]
5. Cadmium and copper uptake and translocation in five willow (Salix L.) species. Kuzovkina YA; Knee M; Quigley MF Int J Phytoremediation; 2004; 6(3):269-87. PubMed ID: 15554478 [TBL] [Abstract][Full Text] [Related]
6. Magnesium and iron deficiencies alter Cd accumulation in Salix viminalis L. Borišev M; Pajević S; Nikolić N; Orlović S; Župunski M; Pilipović A; Kebert M Int J Phytoremediation; 2016; 18(2):164-70. PubMed ID: 26247775 [TBL] [Abstract][Full Text] [Related]
7. Variation of tolerance and accumulation to excess iron in 24 willow clones: Implications for phytoextraction. Yang W; Zhao F; Ding Z; Wang Y; Zhang X; Zhu Z; Yang X Int J Phytoremediation; 2018; 20(13):1284-1291. PubMed ID: 30666895 [TBL] [Abstract][Full Text] [Related]
8. Variability in growth and cadmium accumulation capacity among willow hybrids and their parents: implications for yield-based selection of Cd-efficient cultivars. Wang S; Volk TA; Xu J J Environ Manage; 2021 Dec; 299():113643. PubMed ID: 34526280 [TBL] [Abstract][Full Text] [Related]
9. Comparison of two willow genotypes reveals potential roles of iron-regulated transporter 9 and heavy-metal ATPase 1 in cadmium accumulation and resistance in Salix suchowensis. Guo N; Fan L; Cao Y; Ling H; Xu G; Zhou J; Chen Q; Tao J Ecotoxicol Environ Saf; 2022 Oct; 244():114065. PubMed ID: 36108434 [TBL] [Abstract][Full Text] [Related]
10. Growth, physiological responses, and copper accumulation in seven willow species exposed to Cu-a hydroponic experiment. Cao Y; Zhang Y; Ma C; Li H; Zhang J; Chen G Environ Sci Pollut Res Int; 2018 Jul; 25(20):19875-19886. PubMed ID: 29737488 [TBL] [Abstract][Full Text] [Related]
11. Modulation of the defence responses against Cd in willow species through a multifaceted analysis. Touati M; Bottega S; Ruffini Castiglione M; Sorce C; Béjaoui Z; Spanò C Plant Physiol Biochem; 2019 Sep; 142():125-136. PubMed ID: 31279860 [TBL] [Abstract][Full Text] [Related]
12. Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically. McBride MB; Martinez CE; Kim B Int J Phytoremediation; 2016 Dec; 18(12):1178-86. PubMed ID: 27216699 [TBL] [Abstract][Full Text] [Related]
13. Heavy metal uptake by plant parts of willow species: A meta-analysis. Tőzsér D; Magura T; Simon E J Hazard Mater; 2017 Aug; 336():101-109. PubMed ID: 28482187 [TBL] [Abstract][Full Text] [Related]
14. Effect of water cadmium concentration and water level on the growth performance of Salix triandroides cuttings. Yao X; Ma F; Li Y; Ding X; Zou D; Niu Y; Bian H; Deng J Environ Sci Pollut Res Int; 2018 Mar; 25(8):8002-8011. PubMed ID: 29305802 [TBL] [Abstract][Full Text] [Related]
15. Phytoextraction of risk elements by willow and poplar trees. Kacálková L; Tlustoš P; Száková J Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931 [TBL] [Abstract][Full Text] [Related]
16. Urea-enhanced phytoremediation of cadmium with willow in pyrene and cadmium contaminated soil. Li Y; Xie T; Zha Y; Du W; Yin Y; Guo H J Hazard Mater; 2021 Mar; 405():124257. PubMed ID: 33127193 [TBL] [Abstract][Full Text] [Related]
17. Hydroponic screening of willows (Salix L.) for lead tolerance and accumulation. Zhivotovsky OP; Kuzovkina JA; Schulthess CP; Morris T; Pettinelli D; Ge M Int J Phytoremediation; 2011 Jan; 13(1):75-94. PubMed ID: 21598769 [TBL] [Abstract][Full Text] [Related]
18. Subcellular distribution of cadmium in a novel potential aquatic hyperaccumulator - Microsorum pteropus. Lan XY; Yan YY; Yang B; Li XY; Xu FL Environ Pollut; 2019 May; 248():1020-1027. PubMed ID: 31091634 [TBL] [Abstract][Full Text] [Related]
19. Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead. Wang S; Shi X; Sun H; Chen Y; Pan H; Yang X; Rafiq T PLoS One; 2014; 9(9):e108568. PubMed ID: 25268840 [TBL] [Abstract][Full Text] [Related]
20. Assessment of phytostabilization potential of two Salix L. clones based on the effects of heavy metals on the root anatomical traits. Hrkić Ilić Z; Pajević S; Borišev M; Luković J Environ Sci Pollut Res Int; 2020 Aug; 27(23):29361-29383. PubMed ID: 32440877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]