BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30368578)

  • 1. Regulation of autophagic and mitophagic flux during chronic contractile activity-induced muscle adaptations.
    Kim Y; Triolo M; Erlich AT; Hood DA
    Pflugers Arch; 2019 Mar; 471(3):431-440. PubMed ID: 30368578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the autophagy system during chronic contractile activity-induced muscle adaptations.
    Kim Y; Hood DA
    Physiol Rep; 2017 Jul; 5(14):. PubMed ID: 28720712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contractile activity attenuates autophagy suppression and reverses mitochondrial defects in skeletal muscle cells.
    Parousis A; Carter HN; Tran C; Erlich AT; Mesbah Moosavi ZS; Pauly M; Hood DA
    Autophagy; 2018; 14(11):1886-1897. PubMed ID: 30078345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophagy and mitophagy flux in young and aged skeletal muscle following chronic contractile activity.
    Carter HN; Kim Y; Erlich AT; Zarrin-Khat D; Hood DA
    J Physiol; 2018 Aug; 596(16):3567-3584. PubMed ID: 29781176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-dependent changes in autophagy, mitophagy and lysosomes in skeletal muscle during denervation-induced disuse.
    Triolo M; Slavin M; Moradi N; Hood DA
    J Physiol; 2022 Apr; 600(7):1683-1701. PubMed ID: 35067920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance.
    Lira VA; Okutsu M; Zhang M; Greene NP; Laker RC; Breen DS; Hoehn KL; Yan Z
    FASEB J; 2013 Oct; 27(10):4184-93. PubMed ID: 23825228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.
    Chen CCW; Erlich AT; Hood DA
    Skelet Muscle; 2018 Mar; 8(1):10. PubMed ID: 29549884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronology of UPR activation in skeletal muscle adaptations to chronic contractile activity.
    Memme JM; Oliveira AN; Hood DA
    Am J Physiol Cell Physiol; 2016 Jun; 310(11):C1024-36. PubMed ID: 27122157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition.
    Ju JS; Jeon SI; Park JY; Lee JY; Lee SC; Cho KJ; Jeong JM
    J Physiol Sci; 2016 Sep; 66(5):417-30. PubMed ID: 26943341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of autophagy flux using LC3 ELISA.
    Oh SH; Choi YB; Kim JH; Weihl CC; Ju JS
    Anal Biochem; 2017 Aug; 530():57-67. PubMed ID: 28477964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of age, sex, and exercise on autophagy, mitophagy, and lysosome biogenesis in skeletal muscle.
    Triolo M; Oliveira AN; Kumari R; Hood DA
    Skelet Muscle; 2022 Jun; 12(1):13. PubMed ID: 35690879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of UCP3 in state 4 respiration during contractile activity-induced mitochondrial biogenesis.
    Ljubicic V; Adhihetty PJ; Hood DA
    J Appl Physiol (1985); 2004 Sep; 97(3):976-83. PubMed ID: 15145919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatic mitochondrial adaptations to physical activity: impact of sexual dimorphism, PGC1α and BNIP3-mediated mitophagy.
    Von Schulze A; McCoin CS; Onyekere C; Allen J; Geiger P; Dorn GW; Morris EM; Thyfault JP
    J Physiol; 2018 Dec; 596(24):6157-6171. PubMed ID: 30062822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambra1 deficiency impairs mitophagy in skeletal muscle.
    Gambarotto L; Metti S; Chrisam M; Cerqua C; Sabatelli P; Armani A; Zanon C; Spizzotin M; Castagnaro S; Strappazzon F; Grumati P; Cescon M; Braghetta P; Trevisson E; Cecconi F; Bonaldo P
    J Cachexia Sarcopenia Muscle; 2022 Aug; 13(4):2211-2224. PubMed ID: 35593053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel voluntary weightlifting model in mice promotes muscle adaptation and insulin sensitivity with simultaneous enhancement of autophagy and mTOR pathway.
    Cui D; Drake JC; Wilson RJ; Shute RJ; Lewellen B; Zhang M; Zhao H; Sabik OL; Onengut S; Berr SS; Rich SS; Farber CR; Yan Z
    FASEB J; 2020 Jun; 34(6):7330-7344. PubMed ID: 32304342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of chronic contractile activity on SS and IMF mitochondrial apoptotic susceptibility in skeletal muscle.
    Adhihetty PJ; Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2007 Mar; 292(3):E748-55. PubMed ID: 17106065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimorphic effect of TFE3 in determining mitochondrial and lysosomal content in muscle following denervation.
    Oliveira AN; Memme JM; Wong J; Hood DA
    Skelet Muscle; 2024 Apr; 14(1):7. PubMed ID: 38643162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagic adaptation is associated with exercise-induced fibre-type shifting in skeletal muscle.
    Tam BT; Pei XM; Yu AP; Sin TK; Leung KK; Au KK; Chong JT; Yung BY; Yip SP; Chan LW; Wong CS; Siu PM
    Acta Physiol (Oxf); 2015 Jun; 214(2):221-36. PubMed ID: 25847142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute exercise rapidly activates hepatic mitophagic flux.
    McCoin CS; Franczak E; Deng F; Pei D; Ding WX; Thyfault JP
    J Appl Physiol (1985); 2022 Mar; 132(3):862-873. PubMed ID: 35142562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal muscle metabolic adaptations to endurance exercise training are attainable in mice with simvastatin treatment.
    Southern WM; Nichenko AS; Shill DD; Spencer CC; Jenkins NT; McCully KK; Call JA
    PLoS One; 2017; 12(2):e0172551. PubMed ID: 28207880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.