These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 30368647)
1. Ferulic Acid Produced by Lactobacillus fermentum Influences Developmental Growth Through a dTOR-Mediated Mechanism. Westfall S; Lomis N; Prakash S Mol Biotechnol; 2019 Jan; 61(1):1-11. PubMed ID: 30368647 [TBL] [Abstract][Full Text] [Related]
2. Effect of orally administered L. fermentum NCIMB 5221 on markers of metabolic syndrome: an in vivo analysis using ZDF rats. Tomaro-Duchesneau C; Saha S; Malhotra M; Jones ML; Labbé A; Rodes L; Kahouli I; Prakash S Appl Microbiol Biotechnol; 2014 Jan; 98(1):115-26. PubMed ID: 24121931 [TBL] [Abstract][Full Text] [Related]
3. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Storelli G; Defaye A; Erkosar B; Hols P; Royet J; Leulier F Cell Metab; 2011 Sep; 14(3):403-14. PubMed ID: 21907145 [TBL] [Abstract][Full Text] [Related]
4. Lactobacillus fermentum NCIMB 5221 and NCIMB 2797 as cholesterol-lowering probiotic biotherapeutics: in vitro analysis. Tomaro-Duchesneau C; Saha S; Malhotra M; Jones ML; Rodes L; Prakash S Benef Microbes; 2015; 6(6):861-9. PubMed ID: 26322545 [TBL] [Abstract][Full Text] [Related]
5. Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis. Molina-Tijeras JA; Diez-Echave P; Vezza T; Hidalgo-García L; Ruiz-Malagón AJ; Rodríguez-Sojo MJ; Romero M; Robles-Vera I; García F; Plaza-Diaz J; Olivares M; Duarte J; Rodríguez-Cabezas ME; Rodríguez-Nogales A; Gálvez J Pharmacol Res; 2021 May; 167():105471. PubMed ID: 33529749 [TBL] [Abstract][Full Text] [Related]
7. Potentially Probiotic Limosilactobacillus fermentum Fruit-Derived Strains Alleviate Cardiometabolic Disorders and Gut Microbiota Impairment in Male Rats Fed a High-Fat Diet. de Araújo Henriques Ferreira G; Magnani M; Cabral L; Brandão LR; Noronha MF; de Campos Cruz J; de Souza EL; de Brito Alves JL Probiotics Antimicrob Proteins; 2022 Apr; 14(2):349-359. PubMed ID: 35066820 [TBL] [Abstract][Full Text] [Related]
8. Minocycline treatment suppresses juvenile development and growth by attenuating insulin/TOR signaling in Drosophila animal model. Yun HM; Noh S; Hyun S Sci Rep; 2017 Mar; 7():44724. PubMed ID: 28317899 [TBL] [Abstract][Full Text] [Related]
9. Probiotic Lactobacillus fermentum strain JDFM216 improves cognitive behavior and modulates immune response with gut microbiota. Park MR; Shin M; Mun D; Jeong SY; Jeong DY; Song M; Ko G; Unno T; Kim Y; Oh S Sci Rep; 2020 Dec; 10(1):21701. PubMed ID: 33303803 [TBL] [Abstract][Full Text] [Related]
10. Yersinia enterocolitica and Lactobacillus fermentum induces differential cellular and behavioral responses during diclofenac biotransformation in rat gut. Ahlawat S; Shankar A; Vandna ; Mohan H; Sharma KK Toxicol Appl Pharmacol; 2021 Nov; 431():115741. PubMed ID: 34619158 [TBL] [Abstract][Full Text] [Related]
11. In vivo safety assessment of Lactobacillus fermentum strains, evaluation of their cholesterol-lowering ability and intestinal microbial modulation. Thumu SCR; Halami PM J Sci Food Agric; 2020 Jan; 100(2):705-713. PubMed ID: 31599967 [TBL] [Abstract][Full Text] [Related]
12. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Zhang H; Stallock JP; Ng JC; Reinhard C; Neufeld TP Genes Dev; 2000 Nov; 14(21):2712-24. PubMed ID: 11069888 [TBL] [Abstract][Full Text] [Related]
13. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Sousa-Nunes R; Yee LL; Gould AP Nature; 2011 Mar; 471(7339):508-12. PubMed ID: 21346761 [TBL] [Abstract][Full Text] [Related]
14. Cao J; Wang T; Liu Y; Zhou W; Hao H; Liu Q; Yin B; Yi H Food Funct; 2023 Apr; 14(7):3259-3268. PubMed ID: 36928268 [TBL] [Abstract][Full Text] [Related]
15. Limosilactobacillus fermentum, Current Evidence on the Antioxidant Properties and Opportunities to be Exploited as a Probiotic Microorganism. Paulino do Nascimento LC; Lacerda DC; Ferreira DJS; de Souza EL; de Brito Alves JL Probiotics Antimicrob Proteins; 2022 Oct; 14(5):960-979. PubMed ID: 35467236 [TBL] [Abstract][Full Text] [Related]
16. Microbiota-Mediated Modulation of Organophosphate Insecticide Toxicity by Species-Dependent Interactions with Lactobacilli in a Drosophila melanogaster Insect Model. Daisley BA; Trinder M; McDowell TW; Collins SL; Sumarah MW; Reid G Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475860 [TBL] [Abstract][Full Text] [Related]
17. Ozen M; Piloquet H; Schaubeck M Nutrients; 2023 May; 15(9):. PubMed ID: 37432320 [TBL] [Abstract][Full Text] [Related]
18. The probiotic Lactobacillus fermentum 296 attenuates cardiometabolic disorders in high fat diet-treated rats. Cavalcante RGS; de Albuquerque TMR; de Luna Freire MO; Ferreira GAH; Carneiro Dos Santos LA; Magnani M; Cruz JC; Braga VA; de Souza EL; de Brito Alves JL Nutr Metab Cardiovasc Dis; 2019 Dec; 29(12):1408-1417. PubMed ID: 31640890 [TBL] [Abstract][Full Text] [Related]
19. Differential intestinal anti-inflammatory effects of Lactobacillus fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on microRNAs expression and microbiota composition. Rodríguez-Nogales A; Algieri F; Garrido-Mesa J; Vezza T; Utrilla MP; Chueca N; Garcia F; Olivares M; Rodríguez-Cabezas ME; Gálvez J Mol Nutr Food Res; 2017 Nov; 61(11):. PubMed ID: 28752563 [TBL] [Abstract][Full Text] [Related]
20. Azagra-Boronat I; Tres A; Massot-Cladera M; Franch À; Castell M; Guardiola F; Pérez-Cano FJ; Rodríguez-Lagunas MJ Cells; 2020 Feb; 9(3):. PubMed ID: 32121244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]