These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 30368757)

  • 61. Beyond Tissue Stiffness and Bioadhesivity: Advanced Biomaterials to Model Tumor Microenvironments and Drug Resistance.
    Singh A; Brito I; Lammerding J
    Trends Cancer; 2018 Apr; 4(4):281-291. PubMed ID: 29606313
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mammary epithelium-specific inactivation of V-ATPase reduces stiffness of extracellular matrix and enhances metastasis of breast cancer.
    Katara GK; Kulshrestha A; Mao L; Wang X; Sahoo M; Ibrahim S; Pamarthy S; Suzue K; Shekhawat GS; Gilman-Sachs A; Beaman KD
    Mol Oncol; 2018 Feb; 12(2):208-223. PubMed ID: 29178186
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biomaterials and emerging anticancer therapeutics: engineering the microenvironment.
    Gu L; Mooney DJ
    Nat Rev Cancer; 2016 Jan; 16(1):56-66. PubMed ID: 26694936
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Breast cancer cells mechanosensing in engineered matrices: Correlation with aggressive phenotype.
    Li J; Wu Y; Schimmel N; Al-Ameen MA; Ghosh G
    J Mech Behav Biomed Mater; 2016 Aug; 61():208-220. PubMed ID: 26874251
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The fundamental role of mechanical properties in the progression of cancer disease and inflammation.
    Mierke CT
    Rep Prog Phys; 2014 Jul; 77(7):076602. PubMed ID: 25006689
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fabrication methods of an engineered microenvironment for analysis of cell-biomaterial interactions.
    Shin H
    Biomaterials; 2007 Jan; 28(2):126-33. PubMed ID: 16945407
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel.
    Beck EC; Barragan M; Tadros MH; Gehrke SH; Detamore MS
    Acta Biomater; 2016 Jul; 38():94-105. PubMed ID: 27090590
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A three-dimensional collagen-fiber network model of the extracellular matrix for the simulation of the mechanical behaviors and micro structures.
    Dong S; Huang Z; Tang L; Zhang X; Zhang Y; Jiang Y
    Comput Methods Biomech Biomed Engin; 2017 Jul; 20(9):991-1003. PubMed ID: 28441880
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions.
    Yue X; Nguyen TD; Zellmer V; Zhang S; Zorlutuna P
    Biomaterials; 2018 Jul; 170():37-48. PubMed ID: 29653286
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Application of UVA-riboflavin crosslinking to enhance the mechanical properties of extracellular matrix derived hydrogels.
    Ahearne M; Coyle A
    J Mech Behav Biomed Mater; 2016 Feb; 54():259-67. PubMed ID: 26476968
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Smart biomaterial platforms: Controlling and being controlled by cells.
    Narkar AR; Tong Z; Soman P; Henderson JH
    Biomaterials; 2022 Apr; 283():121450. PubMed ID: 35247636
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A cell-ECM screening method to predict breast cancer metastasis.
    Barney LE; Dandley EC; Jansen LE; Reich NG; Mercurio AM; Peyton SR
    Integr Biol (Camb); 2015 Feb; 7(2):198-212. PubMed ID: 25537447
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel.
    Hogrebe NJ; Reinhardt JW; Tram NK; Debski AC; Agarwal G; Reilly MA; Gooch KJ
    Acta Biomater; 2018 Apr; 70():110-119. PubMed ID: 29410241
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A mechanical composite spheres analysis of engineered cartilage dynamics.
    Kohles SS; Wilson CG; Bonassar LJ
    J Biomech Eng; 2007 Aug; 129(4):473-80. PubMed ID: 17655467
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Getting the big picture of cell-matrix interactions: High-throughput biomaterial platforms and systems-level measurements.
    Lei R; Kumar S
    Curr Opin Solid State Mater Sci; 2020 Dec; 24(6):. PubMed ID: 33244294
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Designer biomaterials for mechanobiology.
    Li L; Eyckmans J; Chen CS
    Nat Mater; 2017 Nov; 16(12):1164-1168. PubMed ID: 29170549
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Designer Self-Assembling Peptide Hydrogels to Engineer 3D Cell Microenvironments for Cell Constructs Formation and Precise Oncology Remodeling in Ovarian Cancer.
    Yang Z; Xu H; Zhao X
    Adv Sci (Weinh); 2020 May; 7(9):1903718. PubMed ID: 32382486
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Marine Collagen Substrates for 2D and 3D Ovarian Cancer Cell Systems.
    Paradiso F; Fitzgerald J; Yao S; Barry F; Taraballi F; Gonzalez D; Conlan RS; Francis L
    Front Bioeng Biotechnol; 2019; 7():343. PubMed ID: 31921795
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biomaterials in Mechano-oncology: Means to Tune Materials to Study Cancer.
    Peyton SR; Gencoglu MF; Galarza S; Schwartz AD
    Adv Exp Med Biol; 2018; 1092():253-287. PubMed ID: 30368757
    [TBL] [Abstract][Full Text] [Related]  

  • 80. 3D Cell Culture in Interpenetrating Networks of Alginate and rBM Matrix.
    Wisdom K; Chaudhuri O
    Methods Mol Biol; 2017; 1612():29-37. PubMed ID: 28634933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.