These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 30368798)
1. Evolution of leaf structure and drought tolerance in species of Californian Ceanothus. Fletcher LR; Cui H; Callahan H; Scoffoni C; John GP; Bartlett MK; Burge DO; Sack L Am J Bot; 2018 Oct; 105(10):1672-1687. PubMed ID: 30368798 [TBL] [Abstract][Full Text] [Related]
2. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Zhu SD; Chen YJ; Ye Q; He PC; Liu H; Li RH; Fu PL; Jiang GF; Cao KF Tree Physiol; 2018 May; 38(5):658-663. PubMed ID: 29474684 [TBL] [Abstract][Full Text] [Related]
3. Extending the osmometer method for assessing drought tolerance in herbaceous species. Griffin-Nolan RJ; Ocheltree TW; Mueller KE; Blumenthal DM; Kray JA; Knapp AK Oecologia; 2019 Feb; 189(2):353-363. PubMed ID: 30627784 [TBL] [Abstract][Full Text] [Related]
4. Correlations between leaf economics, mechanical resistance and drought tolerance across 41 cycad species. Meng YY; Xiang W; Wen Y; Huang DL; Cao KF; Zhu SD Ann Bot; 2022 Sep; 130(3):345-354. PubMed ID: 34871356 [TBL] [Abstract][Full Text] [Related]
5. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Li X; Blackman CJ; Choat B; Duursma RA; Rymer PD; Medlyn BE; Tissue DT Plant Cell Environ; 2018 Mar; 41(3):646-660. PubMed ID: 29314083 [TBL] [Abstract][Full Text] [Related]
6. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Bartlett MK; Zhang Y; Kreidler N; Sun S; Ardy R; Cao K; Sack L Ecol Lett; 2014 Dec; 17(12):1580-90. PubMed ID: 25327976 [TBL] [Abstract][Full Text] [Related]
7. Leaf rehydration capacity: Associations with other indices of drought tolerance and environment. John GP; Henry C; Sack L Plant Cell Environ; 2018 Nov; 41(11):2638-2653. PubMed ID: 29978483 [TBL] [Abstract][Full Text] [Related]
8. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides). Ramírez-Valiente JA; Cavender-Bares J Tree Physiol; 2017 Jul; 37(7):889-901. PubMed ID: 28419347 [TBL] [Abstract][Full Text] [Related]
9. Leaf turgor loss point shapes local and regional distributions of evergreen but not deciduous tropical trees. Kunert N; Zailaa J; Herrmann V; Muller-Landau HC; Wright SJ; Pérez R; McMahon SM; Condit RC; Hubbell SP; Sack L; Davies SJ; Anderson-Teixeira KJ New Phytol; 2021 Apr; 230(2):485-496. PubMed ID: 33449384 [TBL] [Abstract][Full Text] [Related]
10. Functional response and resistance to drought in seedlings of six shrub species with contrasting leaf traits from the Mediterranean Basin and California. Parra A; Pratt RB; Jacobsen AL; Chamorro D; Torres I; Moreno JM Tree Physiol; 2023 Oct; 43(10):1758-1771. PubMed ID: 37369036 [TBL] [Abstract][Full Text] [Related]
11. Influence of dry season on Quercus suber L. leaf traits in the Iberian Peninsula. Prats KA; Brodersen CR; Ashton MS Am J Bot; 2019 May; 106(5):656-666. PubMed ID: 31034587 [TBL] [Abstract][Full Text] [Related]
12. Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. Ackerly DD Am Nat; 2004 May; 163(5):654-71. PubMed ID: 15122485 [TBL] [Abstract][Full Text] [Related]
13. Turgor loss point predicts survival responses to experimental and natural drought in tropical tree seedlings. Álvarez-Cansino L; Comita LS; Jones FA; Manzané-Pinzón E; Browne L; Engelbrecht BMJ Ecology; 2022 Jun; 103(6):e3700. PubMed ID: 35352828 [TBL] [Abstract][Full Text] [Related]
14. Species climate range influences hydraulic and stomatal traits in Eucalyptus species. Bourne AE; Creek D; Peters JMR; Ellsworth DS; Choat B Ann Bot; 2017 Jul; 120(1):123-133. PubMed ID: 28369162 [TBL] [Abstract][Full Text] [Related]
16. Different combinations of morpho-physiological traits are responsible for tolerance to drought in wild tomatoes Solanum chilense and Solanum peruvianum. Tapia G; Méndez J; Inostroza L Plant Biol (Stuttg); 2016 May; 18(3):406-16. PubMed ID: 26499789 [TBL] [Abstract][Full Text] [Related]
17. Climate of origin has no influence on drought adaptive traits and the drought responses of a widely distributed polymorphic shrub. Xu GQ; Farrell C; Arndt SK Tree Physiol; 2022 Jan; 42(1):86-98. PubMed ID: 34259315 [TBL] [Abstract][Full Text] [Related]
18. Plant hydraulic responses to long-term dry season nitrogen deposition alter drought tolerance in a Mediterranean-type ecosystem. Pivovaroff AL; Santiago LS; Vourlitis GL; Grantz DA; Allen MF Oecologia; 2016 Jul; 181(3):721-31. PubMed ID: 27017604 [TBL] [Abstract][Full Text] [Related]
19. Relationships of growth, stable carbon isotope composition and anatomical properties of leaf and xylem in seven mulberry cultivars: a hint towards drought tolerance. Cao X; Shen Q; Liu L; Cheng J Plant Biol (Stuttg); 2020 Mar; 22(2):287-297. PubMed ID: 31677322 [TBL] [Abstract][Full Text] [Related]
20. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient. Knutzen F; Meier IC; Leuschner C Tree Physiol; 2015 Sep; 35(9):949-63. PubMed ID: 26209617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]