BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 3036880)

  • 1. Chemically modified collagen: a natural biomaterial for tissue replacement.
    Nimni ME; Cheung D; Strates B; Kodama M; Sheikh K
    J Biomed Mater Res; 1987 Jun; 21(6):741-71. PubMed ID: 3036880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cross-linking and structure modification of the collagen matrix in the design of cardiovascular prosthesis.
    Nimni ME
    J Card Surg; 1988 Dec; 3(4):523-33. PubMed ID: 2980056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of ectopic calcification of glutaraldehyde crosslinked collagen and collagenous tissues by a covalently bound diphosphonate (APD).
    Nimni ME; Ertl D; Villanueva J; Nimni BS
    Am J Cardiovasc Pathol; 1990; 3(3):237-45. PubMed ID: 2095830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diamine-extended glutaraldehyde- and carbodiimide crosslinks act synergistically in mitigating bioprosthetic aortic wall calcification.
    Zilla P; Bezuidenhout D; Torrianni M; Hendriks M; Human P
    J Heart Valve Dis; 2005 Jul; 14(4):538-45. PubMed ID: 16116882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of periodate and chondroitin 4-sulfate on proteoglycan stabilization of ostrich pericardium. Inhibition of calcification in subcutaneous implants in rats.
    Arenaz B; Maestro MM; Fernández P; Turnay J; Olmo N; Senén J; Mur JG; Lizarbe MA; Jorge-Herrero E
    Biomaterials; 2004 Aug; 25(17):3359-68. PubMed ID: 15020108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevention of bioprosthetic heart valve tissue calcification by charge modification: effects of protamine binding by formaldehyde.
    Golomb G; Ezra V
    J Biomed Mater Res; 1991 Jan; 25(1):85-98. PubMed ID: 1902234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of proteoglycans (PG) and glycosaminoglycans (GAG) on ADP-, collagen- and thrombin-induced platelet aggregation.
    Klein K; Sinzinger H; Silberbauer K; Stachelberger H; Leithner C
    Artery; 1980; 8(5):410-5. PubMed ID: 6783013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials.
    Speer DP; Chvapil M; Eskelson CD; Ulreich J
    J Biomed Mater Res; 1980 Nov; 14(6):753-64. PubMed ID: 6820019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived crosslinks.
    Huang-Lee LL; Cheung DT; Nimni ME
    J Biomed Mater Res; 1990 Sep; 24(9):1185-201. PubMed ID: 2120238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced biostability and biocompatibility of decellularized bovine pericardium, crosslinked with an ultra-low concentration monomeric aldehyde and treated with ADAPT.
    Neethling WM; Yadav S; Hodge AJ; Glancy R
    J Heart Valve Dis; 2008 Jul; 17(4):456-63; discussion 464. PubMed ID: 18751476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tannic acid treatment enhances biostability and reduces calcification of glutaraldehyde fixed aortic wall.
    Isenburg JC; Simionescu DT; Vyavahare NR
    Biomaterials; 2005 Apr; 26(11):1237-45. PubMed ID: 15475053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions.
    Duan X; Sheardown H
    Biomaterials; 2006 Sep; 27(26):4608-17. PubMed ID: 16713624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility study using a natural compound (reuterin) produced by Lactobacillus reuteri in sterilizing and crosslinking biological tissues.
    Chen CN; Sung HW; Liang HF; Chang WH
    J Biomed Mater Res; 2002 Sep; 61(3):360-9. PubMed ID: 12115461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility of collagen membranes crosslinked with glutaraldehyde or diphenylphosphoryl azide: an in vitro study.
    Marinucci L; Lilli C; Guerra M; Belcastro S; Becchetti E; Stabellini G; Calvi EM; Locci P
    J Biomed Mater Res A; 2003 Nov; 67(2):504-9. PubMed ID: 14566791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysine-enhanced glutaraldehyde crosslinking of collagenous biomaterials.
    Simionescu A; Simionescu D; Deac R
    J Biomed Mater Res; 1991 Dec; 25(12):1495-505. PubMed ID: 1794997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen-mediated platelet aggregation: the role of multiple interactions between the platelet surface and collagen.
    Santoro SA; Cunningham LW
    Thromb Haemost; 1980 Jun; 43(2):158-62. PubMed ID: 6779394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of crosslinking of proteins by glutaraldehyde II. Reaction with monomeric and polymeric collagen.
    Cheung DT; Nimni ME
    Connect Tissue Res; 1982; 10(2):201-16. PubMed ID: 6299648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crosslinkage of collagen by polyglycidyl ethers.
    Tang Z; Yue Y
    ASAIO J; 1995; 41(1):72-8. PubMed ID: 7727825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADAPT-treated porcine valve tissue (cusp and wall) versus Medtronic Freestyle and Prima Plus: crosslink stability and calcification behavior in the subcutaneous rat model.
    Neethling WM; Glancy R; Hodge AJ
    J Heart Valve Dis; 2004 Jul; 13(4):689-96; discussion 696. PubMed ID: 15311879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutaraldehyde fixation revisited.
    Nimni ME
    J Long Term Eff Med Implants; 2001; 11(3-4):151-61. PubMed ID: 11921661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.