These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 30368832)

  • 1. Molecular enhanced sampling with autoencoders: On-the-fly collective variable discovery and accelerated free energy landscape exploration.
    Chen W; Ferguson AL
    J Comput Chem; 2018 Sep; 39(25):2079-2102. PubMed ID: 30368832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collective variable discovery and enhanced sampling using autoencoders: Innovations in network architecture and error function design.
    Chen W; Tan AR; Ferguson AL
    J Chem Phys; 2018 Aug; 149(7):072312. PubMed ID: 30134681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear discovery of slow molecular modes using state-free reversible VAMPnets.
    Chen W; Sidky H; Ferguson AL
    J Chem Phys; 2019 Jun; 150(21):214114. PubMed ID: 31176319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Girsanov Reweighting Enhanced Sampling Technique (GREST): On-the-Fly Data-Driven Discovery of and Enhanced Sampling in Slow Collective Variables.
    Shmilovich K; Ferguson AL
    J Phys Chem A; 2023 Apr; 127(15):3497-3517. PubMed ID: 37036804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permutationally Invariant Networks for Enhanced Sampling (PINES): Discovery of Multimolecular and Solvent-Inclusive Collective Variables.
    Herringer NSM; Dasetty S; Gandhi D; Lee J; Ferguson AL
    J Chem Theory Comput; 2024 Jan; 20(1):178-198. PubMed ID: 38150421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An interoperable implementation of collective-variable based enhanced sampling methods in extended phase space within the OpenMM package.
    Bajpai S; Petkov BK; Tong M; Abreu CRA; Nair NN; Tuckerman ME
    J Comput Chem; 2023 Oct; 44(28):2166-2183. PubMed ID: 37464902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables.
    Hashemian B; Millán D; Arroyo M
    J Chem Phys; 2013 Dec; 139(21):214101. PubMed ID: 24320358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MLCV: Bridging Machine-Learning-Based Dimensionality Reduction and Free-Energy Calculation.
    Chen H; Liu H; Feng H; Fu H; Cai W; Shao X; Chipot C
    J Chem Inf Model; 2022 Jan; 62(1):1-8. PubMed ID: 34939790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chasing Collective Variables Using Autoencoders and Biased Trajectories.
    Belkacemi Z; Gkeka P; Lelièvre T; Stoltz G
    J Chem Theory Comput; 2022 Jan; 18(1):59-78. PubMed ID: 34965117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of high dimensional free energy landscapes by a combination of temperature-accelerated sliced sampling and parallel biasing.
    Gupta A; Verma S; Javed R; Sudhakar S; Srivastava S; Nair NN
    J Comput Chem; 2022 Jun; 43(17):1186-1200. PubMed ID: 35510789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multitask Machine Learning of Collective Variables for Enhanced Sampling of Rare Events.
    Sun L; Vandermause J; Batzner S; Xie Y; Clark D; Chen W; Kozinsky B
    J Chem Theory Comput; 2022 Apr; 18(4):2341-2353. PubMed ID: 35274958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating diffusion maps with umbrella sampling: application to alanine dipeptide.
    Ferguson AL; Panagiotopoulos AZ; Debenedetti PG; Kevrekidis IG
    J Chem Phys; 2011 Apr; 134(13):135103. PubMed ID: 21476776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear vs. linear biasing in Trp-cage folding simulations.
    Spiwok V; Oborský P; Pazúriková J; Křenek A; Králová B
    J Chem Phys; 2015 Mar; 142(11):115101. PubMed ID: 25796266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational methods for exploring protein conformations.
    Allison JR
    Biochem Soc Trans; 2020 Aug; 48(4):1707-1724. PubMed ID: 32756904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capabilities and limits of autoencoders for extracting collective variables in atomistic materials science.
    Baima J; Goryaeva AM; Swinburne TD; Maillet JB; Nastar M; Marinica MC
    Phys Chem Chem Phys; 2022 Oct; 24(38):23152-23163. PubMed ID: 36128869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Adaptive Path Collective Variable: A Versatile Biasing Approach to Compute the Average Transition Path and Free Energy of Molecular Transitions.
    Pérez de Alba Ortíz A; Vreede J; Ensing B
    Methods Mol Biol; 2019; 2022():255-290. PubMed ID: 31396907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contour forward flux sampling: Sampling rare events along multiple collective variables.
    DeFever RS; Sarupria S
    J Chem Phys; 2019 Jan; 150(2):024103. PubMed ID: 30646707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective data-driven collective variables for free energy calculations from metadynamics of paths.
    Müllender L; Rizzi A; Parrinello M; Carloni P; Mandelli D
    PNAS Nexus; 2024 Apr; 3(4):pgae159. PubMed ID: 38665160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anncolvar: Approximation of Complex Collective Variables by Artificial Neural Networks for Analysis and Biasing of Molecular Simulations.
    Trapl D; Horvacanin I; Mareska V; Ozcelik F; Unal G; Spiwok V
    Front Mol Biosci; 2019; 6():25. PubMed ID: 31058167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated design of collective variables using supervised machine learning.
    Sultan MM; Pande VS
    J Chem Phys; 2018 Sep; 149(9):094106. PubMed ID: 30195289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.