BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30368841)

  • 1. A computational foray into the mechanism and catalysis of the adduct formation reaction of guanine with crotonaldehyde.
    Kroeger AA; Karton A
    J Comput Chem; 2019 Feb; 40(4):630-637. PubMed ID: 30368841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New DNA adducts of crotonaldehyde and acetaldehyde.
    Hecht SS; McIntee EJ; Wang M
    Toxicology; 2001 Sep; 166(1-2):31-6. PubMed ID: 11518608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of acrolein-guanine adducts: a semi-empirical self-consistent field and nuclear magnetic resonance spectral study.
    Boerth DW; Eder E; Hussain S; Hoffman C
    Chem Res Toxicol; 1998 Apr; 11(4):284-94. PubMed ID: 9548798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation mechanism of glyoxal-DNA adduct, a DNA cross-link precursor.
    Vilanova B; Fernández D; Casasnovas R; Pomar AM; Alvarez-Idaboy JR; Hernández-Haro N; Grand A; Adrover M; Donoso J; Frau J; Muñoz F; Ortega-Castro J
    Int J Biol Macromol; 2017 May; 98():664-675. PubMed ID: 28192135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereospecific formation of interstrand carbinolamine DNA cross-links by crotonaldehyde- and acetaldehyde-derived alpha-CH3-gamma-OH-1,N2-propano-2'-deoxyguanosine adducts in the 5'-CpG-3' sequence.
    Cho YJ; Wang H; Kozekov ID; Kurtz AJ; Jacob J; Voehler M; Smith J; Harris TM; Lloyd RS; Rizzo CJ; Stone MP
    Chem Res Toxicol; 2006 Feb; 19(2):195-208. PubMed ID: 16485895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Schiff base is a major DNA adduct of crotonaldehyde.
    Wang M; McIntee EJ; Cheng G; Shi Y; Villalta PW; Hecht SS
    Chem Res Toxicol; 2001 Apr; 14(4):423-30. PubMed ID: 11304131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insights into the Michael addition of deoxyguanosine to catechol estrogen-3,4-quinones.
    Stack DE; Li G; Hill A; Hoffman N
    Chem Res Toxicol; 2008 Jul; 21(7):1415-25. PubMed ID: 18547067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. trans,trans-2,4-decadienal-induced 1,N(2)-etheno-2'-deoxyguanosine adduct formation.
    Loureiro AP; Di Mascio P; Gomes OF; Medeiros MH
    Chem Res Toxicol; 2000 Jul; 13(7):601-9. PubMed ID: 10898592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The modulation of topoisomerase I-mediated DNA cleavage and the induction of DNA-topoisomerase I crosslinks by crotonaldehyde-derived DNA adducts.
    Dexheimer TS; Kozekova A; Rizzo CJ; Stone MP; Pommier Y
    Nucleic Acids Res; 2008 Jul; 36(12):4128-36. PubMed ID: 18550580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study.
    Jena NR; Mishra PC
    J Phys Chem B; 2005 Jul; 109(29):14205-18. PubMed ID: 16852784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a common molecular basis for sequence recognition of N3-guanine and N3-adenine DNA adducts involving the covalent bonding reaction of (+)-CC-1065.
    Park HJ
    Arch Pharm Res; 2002 Feb; 25(1):11-24. PubMed ID: 11885687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of thiols on DNA modifications via alkylation and Michael addition by alpha-acetoxy-N-nitrosopyrrolidine.
    Wang M; Nishikawa A; Chung FL
    Chem Res Toxicol; 1992; 5(4):528-31. PubMed ID: 1391618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereospecific synthesis of oligonucleotides containing crotonaldehyde adducts of deoxyguanosine.
    Nechev LV; Kozekov I; Harris CM; Harris TM
    Chem Res Toxicol; 2001 Nov; 14(11):1506-12. PubMed ID: 11712908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the linkage type and functional groups in the carcinogenic moiety on the conformational preferences of damaged DNA: structural and energetic characterization of carbon- and oxygen-linked C(8)-phenolic-guanine adducts.
    Sharma P; Majdi Yazdi M; Merriman A; Manderville RA; Wetmore SD
    Chem Res Toxicol; 2015 Apr; 28(4):782-96. PubMed ID: 25658653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational Preference and Fluorescence Response of a C-Linked C8-Biphenyl-Guanine Lesion in the NarI Mutational Hotspot: Evidence for Enhanced Syn Adduct Formation.
    Berger FD; Sturla SJ; Kung RW; Montina T; Wetmore SD; Manderville RA
    Chem Res Toxicol; 2018 Jan; 31(1):37-47. PubMed ID: 29186656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of cyclic 1,N2-propanodeoxyguanosine adducts in DNA upon reaction with acrolein or crotonaldehyde.
    Chung FL; Young R; Hecht SS
    Cancer Res; 1984 Mar; 44(3):990-5. PubMed ID: 6318992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A benzannulation protocol to prepare substituted aryl amines using a Michael-aldol reaction of beta-keto sulfones.
    Kiren S; Padwa A
    J Org Chem; 2009 Oct; 74(20):7781-9. PubMed ID: 19777998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LC-MS study on the formation of cyclic 1,N2-propano guanine adduct in the reactions of DNA with acetaldehyde in the presence of histone.
    Inagaki S; Esaka Y; Goto M; Deyashiki Y; Sako M
    Biol Pharm Bull; 2004 Mar; 27(3):273-6. PubMed ID: 14993787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel 1,N(6)-etheno-2'-deoxyadenosine adducts from lipid peroxidation products.
    Carvalho VM; Asahara F; Di Mascio P; de Arruda Campos IP; Cadet J; Medeiros MH
    Chem Res Toxicol; 2000 May; 13(5):397-405. PubMed ID: 10813657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of DNA adducts of acetaldehyde.
    Wang M; McIntee EJ; Cheng G; Shi Y; Villalta PW; Hecht SS
    Chem Res Toxicol; 2000 Nov; 13(11):1149-57. PubMed ID: 11087437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.