These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 30368842)
1. Quantal Risk Assessment Database: A Database for Exploring Patterns in Quantal Dose-Response Data in Risk Assessment and its Application to Develop Priors for Bayesian Dose-Response Analysis. Wheeler MW; Piegorsch WW; Bailer AJ Risk Anal; 2019 Mar; 39(3):616-629. PubMed ID: 30368842 [TBL] [Abstract][Full Text] [Related]
2. Bayesian model-averaged benchmark dose analysis via reparameterized quantal-response models. Fang Q; Piegorsch WW; Simmons SJ; Li X; Chen C; Wang Y Biometrics; 2015 Dec; 71(4):1168-75. PubMed ID: 26102570 [TBL] [Abstract][Full Text] [Related]
3. Towards quantitative uncertainty assessment for cancer risks: central estimates and probability distributions of risk in dose-response modeling. Kopylev L; Chen C; White P Regul Toxicol Pharmacol; 2007 Dec; 49(3):203-7. PubMed ID: 17905499 [TBL] [Abstract][Full Text] [Related]
4. Using Prior Toxicological Data to Support Dose-Response AssessmentâIdentifying Plausible Prior Distributions for Dichotomous Dose-Response Models. Shao K; Ji C; Chiu WA Environ Sci Technol; 2022 Nov; 56(22):16506-16516. PubMed ID: 36279400 [TBL] [Abstract][Full Text] [Related]
5. A comparison of three methods for integrating historical information for Bayesian model averaged benchmark dose estimation. Shao K Environ Toxicol Pharmacol; 2012 Sep; 34(2):288-296. PubMed ID: 22647377 [TBL] [Abstract][Full Text] [Related]
6. A Web-Based System for Bayesian Benchmark Dose Estimation. Shao K; Shapiro AJ Environ Health Perspect; 2018 Jan; 126(1):017002. PubMed ID: 29329100 [TBL] [Abstract][Full Text] [Related]
7. Model uncertainty and risk estimation for experimental studies of quantal responses. Bailer AJ; Noble RB; Wheeler MW Risk Anal; 2005 Apr; 25(2):291-9. PubMed ID: 15876205 [TBL] [Abstract][Full Text] [Related]
8. Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data. Shao K; Gift JS Risk Anal; 2014 Jan; 34(1):101-20. PubMed ID: 23758102 [TBL] [Abstract][Full Text] [Related]
9. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo. Schmidt PJ; Pintar KD; Fazil AM; Topp E Risk Anal; 2013 Sep; 33(9):1677-93. PubMed ID: 23311599 [TBL] [Abstract][Full Text] [Related]
10. A Bayesian approach to the analysis of quantal bioassay studies using nonparametric mixture models. Fronczyk K; Kottas A Biometrics; 2014 Mar; 70(1):95-102. PubMed ID: 24354490 [TBL] [Abstract][Full Text] [Related]
11. The Bayesian population approach to physiological toxicokinetic-toxicodynamic models--an example using the MCSim software. Jonsson F; Johanson G Toxicol Lett; 2003 Feb; 138(1-2):143-50. PubMed ID: 12559698 [TBL] [Abstract][Full Text] [Related]
12. A computational system for Bayesian benchmark dose estimation of genomic data in BBMD. Ji C; Weissmann A; Shao K Environ Int; 2022 Mar; 161():107135. PubMed ID: 35151117 [TBL] [Abstract][Full Text] [Related]
13. Nonparametric Bayesian methods for benchmark dose estimation. Guha N; Roy A; Kopylev L; Fox J; Spassova M; White P Risk Anal; 2013 Sep; 33(9):1608-19. PubMed ID: 23339666 [TBL] [Abstract][Full Text] [Related]
15. Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach. Chiu WA; Okino MS; Evans MV Toxicol Appl Pharmacol; 2009 Nov; 241(1):36-60. PubMed ID: 19660485 [TBL] [Abstract][Full Text] [Related]
16. Python BMDS: A Python interface library and web application for the canonical EPA dose-response modeling software. Pham LL; Watford S; Friedman KP; Wignall J; Shapiro AJ Reprod Toxicol; 2019 Dec; 90():102-108. PubMed ID: 31415808 [TBL] [Abstract][Full Text] [Related]
17. Demonstrating the Benefits of Predictive Bayesian Dose-Response Relationships Using Six Exposure Studies of Cryptosporidium parvum. Bloetscher F; Meeroff D; Long SC; Dudle JD Risk Anal; 2020 Nov; 40(11):2442-2461. PubMed ID: 32822077 [TBL] [Abstract][Full Text] [Related]
18. Quantifying uncertainty in dose-response screenings of nanoparticles: a Bayesian data analysis. Simeone FC; Costa AL Nanotoxicology; 2022 Mar; 16(2):135-151. PubMed ID: 35286814 [TBL] [Abstract][Full Text] [Related]
19. Bayesian methods in health technology assessment: a review. Spiegelhalter DJ; Myles JP; Jones DR; Abrams KR Health Technol Assess; 2000; 4(38):1-130. PubMed ID: 11134920 [TBL] [Abstract][Full Text] [Related]
20. A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data. Huynh T; Quick H; Ramachandran G; Banerjee S; Stenzel M; Sandler DP; Engel LS; Kwok RK; Blair A; Stewart PA Ann Occup Hyg; 2016 Jan; 60(1):56-73. PubMed ID: 26209598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]