These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 30368917)

  • 1. A Highly Porous Copper Electrocatalyst for Carbon Dioxide Reduction.
    Lv JJ; Jouny M; Luc W; Zhu W; Zhu JJ; Jiao F
    Adv Mater; 2018 Dec; 30(49):e1803111. PubMed ID: 30368917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst for Highly Stable Electrochemical CO
    Li M; Ma Y; Chen J; Lawrence R; Luo W; Sacchi M; Jiang W; Yang J
    Angew Chem Int Ed Engl; 2021 May; 60(20):11487-11493. PubMed ID: 33683786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Catalyst-Electrolyte Microenvironments to Optimize the Activity and Selectivity for the Electrochemical Reduction of CO
    Bui JC; Kim C; King AJ; Romiluyi O; Kusoglu A; Weber AZ; Bell AT
    Acc Chem Res; 2022 Feb; 55(4):484-494. PubMed ID: 35104114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective and High Current CO
    Zhang X; Li J; Li YY; Jung Y; Kuang Y; Zhu G; Liang Y; Dai H
    J Am Chem Soc; 2021 Mar; 143(8):3245-3255. PubMed ID: 33617245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalysts Derived from Copper Complexes Transform CO into C
    Ren S; Zhang Z; Lees EW; Fink AG; Melo L; Hunt C; Dvorak DJ; Yu Wu W; Grant ER; Berlinguette CP
    Chemistry; 2022 May; 28(25):e202200340. PubMed ID: 35344228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multilayer Electrolyzer Stack Converts Carbon Dioxide to Gas Products at High Pressure with High Efficiency.
    Endrődi B; Kecsenovity E; Samu A; Darvas F; Jones RV; Török V; Danyi A; Janáky C
    ACS Energy Lett; 2019 Jul; 4(7):1770-1777. PubMed ID: 31328172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas Phase Electrolysis of Carbon Dioxide to Carbon Monoxide Using Nickel Nitride as the Carbon Enrichment Catalyst.
    Hou P; Wang X; Wang Z; Kang P
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38024-38031. PubMed ID: 30354056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creating interfaces of Cu
    Qu Y; Zheng W; Wang P; Huang H; Huang M; Hu L; Wang H; Chen Q
    J Colloid Interface Sci; 2023 Sep; 645():735-742. PubMed ID: 37172483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical CO
    Liu W; Zhai P; Li A; Wei B; Si K; Wei Y; Wang X; Zhu G; Chen Q; Gu X; Zhang R; Zhou W; Gong Y
    Nat Commun; 2022 Apr; 13(1):1877. PubMed ID: 35387994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide.
    Singh MR; Clark EL; Bell AT
    Phys Chem Chem Phys; 2015 Jul; 17(29):18924-36. PubMed ID: 26103939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper nanoparticle ensembles for selective electroreduction of CO
    Kim D; Kley CS; Li Y; Yang P
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10560-10565. PubMed ID: 28923930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalyst Regeneration via Chemical Oxidation Enables Long-Term Electrochemical Carbon Dioxide Reduction.
    Nguyen TN; Chen Z; Zeraati AS; Shiran HS; Sadaf SM; Kibria MG; Sargent EH; Dinh CT
    J Am Chem Soc; 2022 Jul; 144(29):13254-13265. PubMed ID: 35796714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-Confined Indium Oxides for Efficient Carbon Dioxide Reduction in a Solid-State Electrolyte Flow Cell.
    Wang Z; Zhou Y; Liu D; Qi R; Xia C; Li M; You B; Xia BY
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202200552. PubMed ID: 35257453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local CO
    Mukhopadhyay S; Naeem MS; Shiva Shanker G; Ghatak A; Kottaichamy AR; Shimoni R; Avram L; Liberman I; Balilty R; Ifraemov R; Rozenberg I; Shalom M; López N; Hod I
    Nat Commun; 2024 Apr; 15(1):3397. PubMed ID: 38649389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO
    Cheng Y; Hou P; Wang X; Kang P
    Acc Chem Res; 2022 Feb; 55(3):231-240. PubMed ID: 35045254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal Fabrication of Carbon-Supported Oxide-Derived Copper Heterostructures: A Robust Catalyst System for Enhanced Electro-Reduction of CO
    Tandava VSRK; Spadaro MC; Arbiol J; Murcia-López S; Morante JR
    ChemSusChem; 2023 Oct; 16(19):e202300344. PubMed ID: 37306621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Innocent Role of Porous Carbon Toward Enhancing C
    Han X; Thoi VS
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):45929-45935. PubMed ID: 32931247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SO
    Luc W; Ko BH; Kattel S; Li S; Su D; Chen JG; Jiao F
    J Am Chem Soc; 2019 Jun; 141(25):9902-9909. PubMed ID: 31188567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient carboxylation of styrene and carbon dioxide by single-atomic copper electrocatalyst.
    Quan Y; Yu R; Zhu J; Guan A; Lv X; Yang C; Li S; Wu J; Zheng G
    J Colloid Interface Sci; 2021 Nov; 601():378-384. PubMed ID: 34087598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the C
    Gu L; Dutta Chowdhury A
    Dalton Trans; 2023 Nov; 52(43):15958-15967. PubMed ID: 37846524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.