These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30368926)

  • 21. Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels.
    Porter CJ; Werber JR; Zhong M; Wilson CJ; Elimelech M
    ACS Nano; 2020 Sep; 14(9):10894-10916. PubMed ID: 32886487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antifouling polyvinylidene fluoride ultrafiltration membrane fabricated from embedding polypyrrole coated multiwalled carbon nanotubes.
    Vatanpour V; Ghadimi A; Karimi A; Khataee A; Yekavalangi ME
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():41-51. PubMed ID: 29752113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic control of H+ current in a bioprotonic device with carbon nanotube porins.
    Hemmatian Z; Tunuguntla RH; Noy A; Rolandi M
    PLoS One; 2019; 14(2):e0212197. PubMed ID: 30794578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of amphiphilic polymer-functionalized carbon nanotubes for low-protein-adsorption surfaces and protein-resistant membranes.
    Liu YL; Chang Y; Chang YH; Shih YJ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3642-7. PubMed ID: 21090586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A carbon nanotube wall membrane for water treatment.
    Lee B; Baek Y; Lee M; Jeong DH; Lee HH; Yoon J; Kim YH
    Nat Commun; 2015 May; 6():7109. PubMed ID: 25971895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes.
    Lang C; Shen YX; LaNasa JA; Ye D; Song W; Zimudzi TJ; Hickner MA; Gomez ED; Gomez EW; Kumar M; Hickey RJ
    Faraday Discuss; 2018 Sep; 209(0):179-191. PubMed ID: 29972389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid materials from amphiphilic block copolymers and membrane proteins.
    Nardin C; Meier W
    J Biotechnol; 2002 Mar; 90(1):17-26. PubMed ID: 12069044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Voltage-Gated Transport of Nanoparticles across Free-Standing All-Carbon-Nanotube-Based Hollow-Fiber Membranes.
    Wei G; Quan X; Chen S; Fan X; Yu H; Zhao H
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14620-7. PubMed ID: 26103999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comment on "Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins".
    Horner A; Pohl P
    Science; 2018 Mar; 359(6383):. PubMed ID: 29599215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion-Responsive Channels of Zwitterion-Carbon Nanotube Membrane for Rapid Water Permeation and Ultrahigh Mono-/Multivalent Ion Selectivity.
    Liu TY; Yuan HG; Li Q; Tang YH; Zhang Q; Qian W; Van der Bruggen B; Wang X
    ACS Nano; 2015 Jul; 9(7):7488-96. PubMed ID: 26153719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel.
    Zuo G; Shen R; Ma S; Guo W
    ACS Nano; 2010 Jan; 4(1):205-10. PubMed ID: 20000381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleic acid transport through carbon nanotube membranes.
    Yeh IC; Hummer G
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12177-82. PubMed ID: 15302940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of PEG additives and pore rim functionalization on water transport through sub-1 nm carbon nanotube porins.
    Tunuguntla RH; Hu AY; Zhang Y; Noy A
    Faraday Discuss; 2018 Sep; 209(0):359-369. PubMed ID: 29987303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solid-supported block copolymer membranes through interfacial adsorption of charged block copolymer vesicles.
    Rakhmatullina E; Meier W
    Langmuir; 2008 Jun; 24(12):6254-61. PubMed ID: 18481881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bilayers and interdigitation in block copolymer vesicles.
    Battaglia G; Ryan AJ
    J Am Chem Soc; 2005 Jun; 127(24):8757-64. PubMed ID: 15954782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling the self-assembly structure of magnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles.
    Hickey RJ; Haynes AS; Kikkawa JM; Park SJ
    J Am Chem Soc; 2011 Feb; 133(5):1517-25. PubMed ID: 21208004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulations of electrophoretic RNA transport through transmembrane carbon nanotubes.
    Zimmerli U; Koumoutsakos P
    Biophys J; 2008 Apr; 94(7):2546-57. PubMed ID: 18178663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Constructing all carbon nanotube hollow fiber membranes with improved performance in separation and antifouling for water treatment.
    Wei G; Yu H; Quan X; Chen S; Zhao H; Fan X
    Environ Sci Technol; 2014 Jul; 48(14):8062-8. PubMed ID: 24938619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of biofunctional nanomaterials via Escherichia coli OmpF protein air/water interface insertion/integration with copolymeric amphiphiles.
    Ho D; Chang S; Montemagno CD
    Nanomedicine; 2006 Jun; 2(2):103-12. PubMed ID: 17292122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gated ion transport through dense carbon nanotube membranes.
    Yu M; Funke HH; Falconer JL; Noble RD
    J Am Chem Soc; 2010 Jun; 132(24):8285-90. PubMed ID: 20504021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.