These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 30368937)
1. Multiscale Structural Engineering of Ni-Doped CoO Nanosheets for Zinc-Air Batteries with High Power Density. Li YJ; Cui L; Da PF; Qiu KW; Qin WJ; Hu WB; Du XW; Davey K; Ling T; Qiao SZ Adv Mater; 2018 Nov; 30(46):e1804653. PubMed ID: 30368937 [TBL] [Abstract][Full Text] [Related]
2. Doping-engineered bifunctional oxygen electrocatalyst with Se/Fe-doped Co Zhao H; Yao H; Wang S; Cao Y; Lu Z; Xie J; Hu J; Hao A J Colloid Interface Sci; 2022 Nov; 626():475-485. PubMed ID: 35803146 [TBL] [Abstract][Full Text] [Related]
3. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Li Y; Gong M; Liang Y; Feng J; Kim JE; Wang H; Hong G; Zhang B; Dai H Nat Commun; 2013; 4():1805. PubMed ID: 23651993 [TBL] [Abstract][Full Text] [Related]
4. Oxygen Vacancy-Rich In-Doped CoO/CoP Heterostructure as an Effective Air Cathode for Rechargeable Zn-Air Batteries. Jin W; Chen J; Liu B; Hu J; Wu Z; Cai W; Fu G Small; 2019 Nov; 15(46):e1904210. PubMed ID: 31559688 [TBL] [Abstract][Full Text] [Related]
5. Bifunctional Electrocatalytic Activity of Nitrogen-Doped NiO Nanosheets for Rechargeable Zinc-Air Batteries. Qian J; Bai X; Xi S; Xiao W; Gao D; Wang J ACS Appl Mater Interfaces; 2019 Aug; 11(34):30865-30871. PubMed ID: 31380619 [TBL] [Abstract][Full Text] [Related]
6. MnO/N-Doped Mesoporous Carbon as Advanced Oxygen Reduction Reaction Electrocatalyst for Zinc-Air Batteries. Ding J; Ji S; Wang H; Brett DJL; Pollet BG; Wang R Chemistry; 2019 Feb; 25(11):2868-2876. PubMed ID: 30548500 [TBL] [Abstract][Full Text] [Related]
7. Strain-Regulated Pt-NiO@Ni Sub-Micron Particles Achieving Bifunctional Electrocatalysis for Zinc-Air Battery. Zhang F; Ji R; Zhu X; Li H; Wang Y; Wang J; Wang F; Lan H Small; 2023 Aug; 19(34):e2301640. PubMed ID: 37093205 [TBL] [Abstract][Full Text] [Related]
8. A Composite Bifunctional Oxygen Electrocatalyst for High-Performance Rechargeable Zinc-Air Batteries. Liu JN; Li BQ; Zhao CX; Yu J; Zhang Q ChemSusChem; 2020 Mar; 13(6):1529-1536. PubMed ID: 31845530 [TBL] [Abstract][Full Text] [Related]
9. FeCo alloy entrapped in N-doped graphitic carbon nanotubes-on-nanosheets prepared by coordination-induced pyrolysis for oxygen reduction reaction and rechargeable Zn-air battery. Liu LL; Wu DH; Zhang L; Feng JJ; Wang AJ J Colloid Interface Sci; 2023 Jun; 639():424-433. PubMed ID: 36812858 [TBL] [Abstract][Full Text] [Related]
10. Molten salt induced formation of chitosan based carbon nanosheets decorated with CoN Zhou Q; Tian Y; Wang M; Lei S; Xiong C J Colloid Interface Sci; 2023 Jul; 641():842-852. PubMed ID: 36966573 [TBL] [Abstract][Full Text] [Related]
11. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
12. Cobalt Phthalocyanine-Doped Polymer-Based Electrocatalyst for Rechargeable Zinc-Air Batteries. Kumar Y; Akula S; Kibena-Põldsepp E; Käärik M; Kozlova J; Kikas A; Aruväli J; Kisand V; Leis J; Tamm A; Tammeveski K Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512381 [TBL] [Abstract][Full Text] [Related]
13. Wood-Derived Integral Air Electrode for Enhanced Interfacial Electrocatalysis in Rechargeable Zinc-Air Battery. Cui X; Liu Y; Han G; Cao M; Han L; Zhou B; Mehdi S; Wu X; Li B; Jiang J Small; 2021 Sep; 17(38):e2101607. PubMed ID: 34365727 [TBL] [Abstract][Full Text] [Related]
14. Size-controlled Co/CoO heterogeneous nanoparticles confined in N-doped mesoporous carbon for efficient oxygen reduction in zinc-air batteries. Li M; Shi J; Xu B; Yang X; Gao F; Zheng X; Liu Y; Cao F; Guo X; Zhang J J Colloid Interface Sci; 2024 Jan; 653(Pt B):1317-1325. PubMed ID: 37797506 [TBL] [Abstract][Full Text] [Related]
15. Atomic Ni and Cu co-anchored 3D nanoporous graphene as an efficient oxygen reduction electrocatalyst for zinc-air batteries. Cheng Y; Wu H; Han J; Zhong S; Huang S; Chu S; Song S; Reddy KM; Wang X; Wu S; Zhuang X; Johnson I; Liu P; Chen M Nanoscale; 2021 Jun; 13(24):10862-10870. PubMed ID: 34114571 [TBL] [Abstract][Full Text] [Related]
16. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery. Ma L; Chen S; Pei Z; Huang Y; Liang G; Mo F; Yang Q; Su J; Gao Y; Zapien JA; Zhi C ACS Nano; 2018 Feb; 12(2):1949-1958. PubMed ID: 29432686 [TBL] [Abstract][Full Text] [Related]
17. Plasma-Treated Ultrathin Ternary FePSe Hao Y; Huang A; Han S; Huang H; Song J; Sun X; Wang Z; Li L; Hu F; Xue J; Peng S ACS Appl Mater Interfaces; 2020 Jul; 12(26):29393-29403. PubMed ID: 32490656 [TBL] [Abstract][Full Text] [Related]
18. Co-Ni Alloy Encapsulated by N-doped Graphene as a Cathode Catalyst for Rechargeable Hybrid Li-Air Batteries. Chang Z; Yu F; Liu Z; Peng S; Guan M; Shen X; Zhao S; Liu N; Wu Y; Chen Y ACS Appl Mater Interfaces; 2020 Jan; 12(4):4366-4372. PubMed ID: 31867946 [TBL] [Abstract][Full Text] [Related]
19. NaCl sealing Strategy-Assisted synthesis CoO-Co heterojunctions as efficient oxygen electrocatalysts for Zn air batteries. Diao L; Zhou W; Zhang B; Shi C; Miao Z; Zhou J; He C J Colloid Interface Sci; 2023 Sep; 645():329-337. PubMed ID: 37150006 [TBL] [Abstract][Full Text] [Related]
20. Self-Assembled NiO/Ni(OH)2 Nanoflakes as Active Material for High-Power and High-Energy Hybrid Rechargeable Battery. Lee DU; Fu J; Park MG; Liu H; Ghorbani Kashkooli A; Chen Z Nano Lett; 2016 Mar; 16(3):1794-802. PubMed ID: 26854411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]