These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30369036)

  • 1. Developing a three-dimensional animation for deeper molecular understanding of michaelis-menten enzyme kinetics.
    Florjanczyk U; Ng DP; Andreopoulos S; Jenkinson J
    Biochem Mol Biol Educ; 2018 Sep; 46(5):561-565. PubMed ID: 30369036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rethinking enzyme kinetics: Designing and developing a biomolecular interactive tutorial (BIOMINT) learning tool for undergraduate students.
    Gu J; Andreopoulos S; Jenkinson J; Ng DP
    Biochem Mol Biol Educ; 2020 Jan; 48(1):74-79. PubMed ID: 31532881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A laboratory work to introduce biochemistry undergraduate students to basic enzyme kinetics-alkaline phosphatase as a model.
    Miquet JG; González L; Sotelo AI; González Lebrero RM
    Biochem Mol Biol Educ; 2019 Jan; 47(1):93-99. PubMed ID: 30576049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of mushroom tyrosinase to introduce michaelis-menten enzyme kinetics to biochemistry students.
    Flurkey WH; Inlow JK
    Biochem Mol Biol Educ; 2017 May; 45(3):270-276. PubMed ID: 28509370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pop-it beads to introduce catalysis of reaction rate and substrate depletion effects.
    Gehret AU
    Biochem Mol Biol Educ; 2017 Mar; 45(2):179-183. PubMed ID: 27613332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple classroom teaching technique to help students understand Michaelis-Menten kinetics.
    Runge SW; Hill BJ; Moran WM; Turrens JF
    CBE Life Sci Educ; 2006; 5(4):348-52. PubMed ID: 17146042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.
    Tummler K; Lubitz T; Schelker M; Klipp E
    FEBS J; 2014 Jan; 281(2):549-71. PubMed ID: 24034816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A guide to the Michaelis-Menten equation: steady state and beyond.
    Srinivasan B
    FEBS J; 2022 Oct; 289(20):6086-6098. PubMed ID: 34270860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microscopic model of enzyme kinetics.
    Gentry R; Ye L; Nemerson Y
    Biophys J; 1995 Aug; 69(2):356-61. PubMed ID: 8527648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the flux as the driving force for nonequilibrium dynamics and thermodynamics in non-Michaelis-Menten enzyme kinetics.
    Liu Q; Wang J
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):923-930. PubMed ID: 31879351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical analysis of the significance of whether or not enzymes or transport systems in structured media follow Michaelis-Menten kinetics.
    Vincent JC; Thellier M
    Biophys J; 1983 Jan; 41(1):23-8. PubMed ID: 6824750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Kinetic Analysis of Coupled (or Auxiliary) Enzyme Reactions.
    Eilertsen J; Schnell S
    Bull Math Biol; 2018 Dec; 80(12):3154-3183. PubMed ID: 30288641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Legitimacy of the stochastic Michaelis-Menten approximation.
    Sanft KR; Gillespie DT; Petzold LR
    IET Syst Biol; 2011 Jan; 5(1):58. PubMed ID: 21261403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alternative approach to Michaelis-Menten kinetics that is based on the renormalization group.
    Coluzzi B; Bersani AM; Bersani E
    Math Biosci; 2018 May; 299():28-50. PubMed ID: 29197510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exponential function for calculating saturable enzyme kinetics.
    Keller F; Emde C; Schwarz A
    Clin Chem; 1988 Dec; 34(12):2486-9. PubMed ID: 3197288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classic and contemporary approaches to modeling biochemical reactions.
    Chen WW; Niepel M; Sorger PK
    Genes Dev; 2010 Sep; 24(17):1861-75. PubMed ID: 20810646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a structured undergraduate research experience: Framework and implications.
    Brown AM; Lewis SN; Bevan DR
    Biochem Mol Biol Educ; 2016 Sep; 44(5):463-74. PubMed ID: 27124101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General mathematical formula for near equilibrium relaxation kinetics of basic enzyme reactions and its applications to find conformational selection steps.
    Egawa T; Callender R
    Math Biosci; 2019 Jul; 313():61-70. PubMed ID: 30935841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations of enzymatic reactions in crowded media. Effect of the enzyme-obstacle relative size.
    Pitulice L; Vilaseca E; Pastor I; Madurga S; Garcés JL; Isvoran A; Mas F
    Math Biosci; 2014 May; 251():72-82. PubMed ID: 24680707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.