BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30369053)

  • 1. Ancestral diterpene cyclases show increased thermostability and substrate acceptance.
    Hendrikse NM; Charpentier G; Nordling E; Syrén PO
    FEBS J; 2018 Dec; 285(24):4660-4673. PubMed ID: 30369053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of Ancestors as a Tool to Elucidate Structure, Mechanism, and Specificity of Extant Terpene Cyclase.
    Schriever K; Saenz-Mendez P; Rudraraju RS; Hendrikse NM; Hudson EP; Biundo A; Schnell R; Syrén PO
    J Am Chem Soc; 2021 Mar; 143(10):3794-3807. PubMed ID: 33496585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic studies of Micrococcus luteus B-P 26 undecaprenyl diphosphate synthase reaction using 3-desmethyl allylic substrate analogs.
    Fujikura K; Maki Y; Ohya N; Satoh M; Koyama T
    Biosci Biotechnol Biochem; 2008 Mar; 72(3):851-5. PubMed ID: 18323637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved selectivity of an engineered multi-product terpene synthase.
    Lauchli R; Pitzer J; Kitto RZ; Kalbarczyk KZ; Rabe KS
    Org Biomol Chem; 2014 Jun; 12(23):4013-20. PubMed ID: 24809278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mono and diterpene production in Escherichia coli.
    Reiling KK; Yoshikuni Y; Martin VJ; Newman J; Bohlmann J; Keasling JD
    Biotechnol Bioeng; 2004 Jul; 87(2):200-12. PubMed ID: 15236249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly-Line Catalysis in Bifunctional Terpene Synthases.
    Faylo JL; Ronnebaum TA; Christianson DW
    Acc Chem Res; 2021 Oct; 54(20):3780-3791. PubMed ID: 34254507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of bacterial diterpene cyclases that synthesize the cembrane skeleton.
    Meguro A; Tomita T; Nishiyama M; Kuzuyama T
    Chembiochem; 2013 Feb; 14(3):316-21. PubMed ID: 23386483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sesquiterpene Synthase-Catalyzed Conversion of a Farnesyl Diphosphate Analogue to a Nonnatural Terpenoid Ether.
    Huynh F; Miller DJ; Allemann RK
    Methods Enzymol; 2018; 608():83-95. PubMed ID: 30173774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome mining in Streptomyces avermitilis: cloning and characterization of SAV_76, the synthase for a new sesquiterpene, avermitilol.
    Chou WK; Fanizza I; Uchiyama T; Komatsu M; Ikeda H; Cane DE
    J Am Chem Soc; 2010 Jul; 132(26):8850-1. PubMed ID: 20536237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of the Diterpene Cyclases β-Pinacene Synthase from Dictyostelium discoideum and Hydropyrene Synthase from Streptomyces clavuligerus.
    Rinkel J; Rabe P; Chen X; Köllner TG; Chen F; Dickschat JS
    Chemistry; 2017 Aug; 23(44):10501-10505. PubMed ID: 28696553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes.
    Richter A; Seidl-Adams I; Köllner TG; Schaff C; Tumlinson JH; Degenhardt J
    Planta; 2015 Jun; 241(6):1351-61. PubMed ID: 25680349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome mining in Streptomyces clavuligerus: expression and biochemical characterization of two new cryptic sesquiterpene synthases.
    Hu Y; Chou WK; Hopson R; Cane DE
    Chem Biol; 2011 Jan; 18(1):32-7. PubMed ID: 21276937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate and product specificities of cis-type undecaprenyl pyrophosphate synthase.
    Chen AP; Chang SY; Lin YC; Sun YS; Chen CT; Wang AH; Liang PH
    Biochem J; 2005 Feb; 386(Pt 1):169-76. PubMed ID: 15447632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and characterization of isoprenyl diphosphate synthases with farnesyl diphosphate and geranylgeranyl diphosphate synthase activity from Norway spruce (Picea abies) and their relation to induced oleoresin formation.
    Schmidt A; Gershenzon J
    Phytochemistry; 2007 Nov; 68(21):2649-59. PubMed ID: 17624381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial biosynthesis and the basis for substrate promiscuity in class I diterpene synthases.
    Jia M; Mishra SK; Tufts S; Jernigan RL; Peters RJ
    Metab Eng; 2019 Sep; 55():44-58. PubMed ID: 31220664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes.
    Falara V; Pichersky E; Kanellis AK
    Plant Physiol; 2010 Sep; 154(1):301-10. PubMed ID: 20595348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and structural studies with prenyl diphosphate analogues provide insights into isoprenoid recognition by protein farnesyl transferase.
    Turek-Etienne TC; Strickland CL; Distefano MD
    Biochemistry; 2003 Apr; 42(13):3716-24. PubMed ID: 12667062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the Rv3377c gene product, a type-B diterpene cyclase, from the Mycobacterium tuberculosis H37 genome.
    Nakano C; Hoshino T
    Chembiochem; 2009 Aug; 10(12):2060-71. PubMed ID: 19618417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analogs of farnesyl diphosphate alter CaaX substrate specificity and reactions rates of protein farnesyltransferase.
    Jennings BC; Danowitz AM; Wang YC; Gibbs RA; Distefano MD; Fierke CA
    Bioorg Med Chem Lett; 2016 Feb; 26(4):1333-6. PubMed ID: 26803203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture.
    Grundy DJ; Chen M; González V; Leoni S; Miller DJ; Christianson DW; Allemann RK
    Biochemistry; 2016 Apr; 55(14):2112-21. PubMed ID: 26998816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.