BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 30369063)

  • 1. Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry.
    Alturkistany F; Nichani K; Houston KD; Houston JP
    Cytometry A; 2019 Jan; 95(1):70-79. PubMed ID: 30369063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Caspase-3 Activity During Apoptosis with Fluorescence Lifetime-Based Cytometry Measurements and Phasor Analyses.
    Nichani K; Li J; Suzuki M; Houston JP
    Cytometry A; 2020 Dec; 97(12):1265-1275. PubMed ID: 32790129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Enzyme Mapping of Cellular Metabolism by Phasor-Analyzed Label-Free NAD(P)H Fluorescence Lifetime Imaging.
    Leben R; Köhler M; Radbruch H; Hauser AE; Niesner RA
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31703416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method to Detect the Cellular Source of Over-Activated NADPH Oxidases Using NAD(P)H Fluorescence Lifetime Imaging.
    Bremer D; Leben R; Mothes R; Radbruch H; Niesner R
    Curr Protoc Cytom; 2017 Apr; 80():9.52.1-9.52.14. PubMed ID: 28369765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the metabolic index using the fluorescence lifetime of free and bound nicotinamide adenine dinucleotide using the phasor approach.
    Ranjit S; Malacrida L; Stakic M; Gratton E
    J Biophotonics; 2019 Nov; 12(11):e201900156. PubMed ID: 31194290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of phasor-based analysis for FLIM to evaluate the metabolic and epigenetic impact of HER2 inhibition on squamous cell carcinoma cultures.
    Pham DL; Miller CR; Myers MS; Myers DM; Hansen LA; Nichols MG
    J Biomed Opt; 2021 Oct; 26(10):. PubMed ID: 34628733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autofluorescence Imaging to Evaluate Cellular Metabolism.
    Theodossiou A; Hu L; Wang N; Nguyen U; Walsh AJ
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].
    Cheng Y; Ren M; Niu Y; Qiao J; Aneba S; Chorvat D; Chorvatova A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1191-200. PubMed ID: 20095467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Profiling of Live Cancer Tissues Using NAD(P)H Fluorescence Lifetime Imaging.
    Blacker TS; Sewell MDE; Szabadkai G; Duchen MR
    Methods Mol Biol; 2019; 1928():365-387. PubMed ID: 30725465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon fluorescence lifetime imaging of intrinsic NADH in three-dimensional tumor models.
    Cong A; Pimenta RML; Lee HB; Mereddy V; Holy J; Heikal AA
    Cytometry A; 2019 Jan; 95(1):80-92. PubMed ID: 30343512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of phasor analysis and biexponential decay curve fitting of autofluorescence lifetime imaging data for machine learning prediction of cellular phenotypes.
    Hu L; Ter Hofstede B; Sharma D; Zhao F; Walsh AJ
    Front Bioinform; 2023; 3():1210157. PubMed ID: 37455808
    [No Abstract]   [Full Text] [Related]  

  • 13. Two-photon FLIM of NAD(P)H and FAD in mesenchymal stem cells undergoing either osteogenic or chondrogenic differentiation.
    Meleshina AV; Dudenkova VV; Bystrova AS; Kuznetsova DS; Shirmanova MV; Zagaynova EV
    Stem Cell Res Ther; 2017 Jan; 8(1):15. PubMed ID: 28129796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADH distribution in live progenitor stem cells by phasor-fluorescence lifetime image microscopy.
    Wright BK; Andrews LM; Markham J; Jones MR; Stringari C; Digman MA; Gratton E
    Biophys J; 2012 Jul; 103(1):L7-9. PubMed ID: 22828352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-Free Metabolic Classification of Single Cells in Droplets Using the Phasor Approach to Fluorescence Lifetime Imaging Microscopy.
    Ma N; Kamalakshakurup G; Aghaamoo M; Lee AP; Digman MA
    Cytometry A; 2019 Jan; 95(1):93-100. PubMed ID: 30536717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overview of Fluorescence Lifetime Measurements in Flow Cytometry.
    Houston JP; Yang Z; Sambrano J; Li W; Nichani K; Vacca G
    Methods Mol Biol; 2018; 1678():421-446. PubMed ID: 29071689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the potential of standard flow cytometry by extracting fluorescence lifetimes from cytometric pulse shifts.
    Cao R; Naivar MA; Wilder M; Houston JP
    Cytometry A; 2014 Dec; 85(12):999-1010. PubMed ID: 25274073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence Lifetime Measurements and Analyses: Protocols Using Flow Cytometry and High-Throughput Microscopy.
    Houston JP; Valentino S; Bitton A
    Methods Mol Biol; 2024; 2779():323-351. PubMed ID: 38526793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phasor plotting with frequency-domain flow cytometry.
    Cao R; Jenkins P; Peria W; Sands B; Naivar M; Brent R; Houston JP
    Opt Express; 2016 Jun; 24(13):14596-607. PubMed ID: 27410612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence.
    Niesner R; Peker B; Schlüsche P; Gericke KH
    Chemphyschem; 2004 Aug; 5(8):1141-9. PubMed ID: 15446736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.