These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30369068)

  • 1. Core-Shell Hybrid Nanowires with Protein Enabling Fast Ion Conduction for High-Performance Composite Polymer Electrolytes.
    Fu X; Wang Y; Fan X; Scudiero L; Zhong WH
    Small; 2018 Dec; 14(49):e1803564. PubMed ID: 30369068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building Ion-Conduction Highways in Polymeric Electrolytes by Manipulating Protein Configuration.
    Fu X; Li C; Wang Y; Kovatch LP; Scudiero L; Liu J; Zhong W
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4726-4736. PubMed ID: 29334456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires.
    Liu W; Lin D; Sun J; Zhou G; Cui Y
    ACS Nano; 2016 Dec; 10(12):11407-11413. PubMed ID: 28024352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.
    Liu W; Liu N; Sun J; Hsu PC; Li Y; Lee HW; Cui Y
    Nano Lett; 2015 Apr; 15(4):2740-5. PubMed ID: 25782069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite Polymer Electrolytes with Li
    Yang T; Zheng J; Cheng Q; Hu YY; Chan CK
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21773-21780. PubMed ID: 28598143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite Solid Electrolyte with Continuous and Fast Organic-Inorganic Ion Transport Highways Created by 3D Crimped Nanofibers@functional Ceramic Nanowires.
    Yang Q; Li G; Shi D; Gao L; Deng N; Kang W; Cheng B
    Small; 2023 Aug; 19(34):e2301521. PubMed ID: 37093187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Ion-Conducting Solid-State Composite Electrolytes with Carbon Quantum Dot Nanofillers.
    Ma C; Dai K; Hou H; Ji X; Chen L; Ivey DG; Wei W
    Adv Sci (Weinh); 2018 May; 5(5):1700996. PubMed ID: 29876221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer composite electrolytes having core-shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries.
    Shim J; Kim DG; Kim HJ; Lee JH; Lee JC
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7690-701. PubMed ID: 25805120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives.
    Zhang H; Li C; Piszcz M; Coya E; Rojo T; Rodriguez-Martinez LM; Armand M; Zhou Z
    Chem Soc Rev; 2017 Feb; 46(3):797-815. PubMed ID: 28098280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional-Percolated Ceramic Nanoparticles along Natural-Cellulose-Derived Hierarchical Networks for High Li
    Wang C; Huang D; Li S; Yu J; Zhu M; Liu N; Lu Z
    Nano Lett; 2020 Oct; 20(10):7397-7404. PubMed ID: 32903000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Insights into the Compositional Dependence of Li-Ion Transport in Polymer-Ceramic Composite Electrolytes.
    Zheng J; Hu YY
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4113-4120. PubMed ID: 29303244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Lithium-Ion Conductivity of Polymer Electrolytes by Selective Introduction of Hydrogen into the Anion.
    Zhang H; Oteo U; Zhu H; Judez X; Martinez-IbaƱez M; Aldalur I; Sanchez-Diez E; Li C; Carrasco J; Forsyth M; Armand M
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7829-7834. PubMed ID: 30652396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of ionic conductivity of PEO based polymer electrolyte by the addition of nanosize ceramic powders.
    Wang GX; Yang L; Wang JZ; Liu HK; Dou SX
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1135-40. PubMed ID: 16108440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Ionic Conductivity with Bimodal-Sized Li
    Sun Y; Zhan X; Hu J; Wang Y; Gao S; Shen Y; Cheng YT
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12467-12475. PubMed ID: 30855127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solid-State Lithium Metal Batteries.
    Pan K; Zhang L; Qian W; Wu X; Dong K; Zhang H; Zhang S
    Adv Mater; 2020 Apr; 32(17):e2000399. PubMed ID: 32173931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance All-Solid-State Polymer Electrolyte with Controllable Conductivity Pathway Formed by Self-Assembly of Reactive Discogen and Immobilized via a Facile Photopolymerization for a Lithium-Ion Battery.
    Wang S; Liu X; Wang A; Wang Z; Chen J; Zeng Q; Jiang X; Zhou H; Zhang L
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25273-25284. PubMed ID: 29975039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes.
    Lago N; Garcia-Calvo O; Lopez del Amo JM; Rojo T; Armand M
    ChemSusChem; 2015 Sep; 8(18):3039-43. PubMed ID: 26373359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties.
    Wang W; Alexandridis P
    Polymers (Basel); 2016 Nov; 8(11):. PubMed ID: 30974666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable Conversion Chemistry-Based Lithium Metal Batteries Enabled by Hierarchical Multifunctional Polymer Electrolytes with Near-Single Ion Conduction.
    Zhou D; Tkacheva A; Tang X; Sun B; Shanmukaraj D; Li P; Zhang F; Armand M; Wang G
    Angew Chem Int Ed Engl; 2019 Apr; 58(18):6001-6006. PubMed ID: 30830705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries.
    Forsyth M; Porcarelli L; Wang X; Goujon N; Mecerreyes D
    Acc Chem Res; 2019 Mar; 52(3):686-694. PubMed ID: 30801170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.