These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30369073)

  • 1. Biomechanical Study of the Development of Long Bones: Finite Element Structure Synthesis of the Human Second Proximal Phalanx Under Growth Conditions.
    Lipphaus A; Witzel U
    Anat Rec (Hoboken); 2019 Aug; 302(8):1389-1398. PubMed ID: 30369073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-Element Syntheses of Callus and Bone Remodeling: Biomechanical Study of Fracture Healing in Long Bones.
    Lipphaus A; Witzel U
    Anat Rec (Hoboken); 2018 Dec; 301(12):2112-2121. PubMed ID: 30290071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanobiological modeling of endochondral ossification: an experimental and computational analysis.
    Vaca-González JJ; Moncayo-Donoso M; Guevara JM; Hata Y; Shefelbine SJ; Garzón-Alvarado DA
    Biomech Model Mechanobiol; 2018 Jun; 17(3):853-875. PubMed ID: 29322335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-finite element (μFE) modeling of the siamang (Symphalangus syndactylus) third proximal phalanx: the functional role of curvature and the flexor sheath ridge.
    Huynh Nguyen N; Pahr DH; Gross T; Skinner MM; Kivell TL
    J Hum Evol; 2014 Feb; 67():60-75. PubMed ID: 24496040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the local mechanical environment on vertebrate tissue differentiation during repair: does repair recapitulate development?
    Cullinane DM; Salisbury KT; Alkhiary Y; Eisenberg S; Gerstenfeld L; Einhorn TA
    J Exp Biol; 2003 Jul; 206(Pt 14):2459-71. PubMed ID: 12796461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization.
    Boyle C; Kim IY
    J Biomech; 2011 Mar; 44(5):935-42. PubMed ID: 21159341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional finite element analysis of the dural folds and the human skull under head acceleration.
    Lipphaus A; Witzel U
    Anat Rec (Hoboken); 2021 Feb; 304(2):384-392. PubMed ID: 32275348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study of Wolff's law with trabecular architecture in the human proximal femur using topology optimization.
    Jang IG; Kim IY
    J Biomech; 2008 Aug; 41(11):2353-61. PubMed ID: 18667206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element analysis of stress in the equine proximal phalanx.
    O'Hare LM; Cox PG; Jeffery N; Singer ER
    Equine Vet J; 2013 May; 45(3):273-7. PubMed ID: 22943561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer model of endochondral growth and ossification in long bones: biological and mechanobiological influences.
    Stevens SS; Beaupré GS; Carter DR
    J Orthop Res; 1999 Sep; 17(5):646-53. PubMed ID: 10569472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Construction and simulation mechanical analysis of dynamic knee joint finite element model based on CT image].
    Chen YF; Lu C; Zhao Y; Cheng YZ; Qiao F; Qin WK; Hou CZ; Liu GW
    Zhongguo Gu Shang; 2020 May; 33(5):479-84. PubMed ID: 32452190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs.
    Levadnyi I; Awrejcewicz J; Gubaua JE; Pereira JT
    Clin Biomech (Bristol, Avon); 2017 Dec; 50():122-129. PubMed ID: 29100185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanobiology and joint conformity regulate endochondral ossification of sesamoids.
    Sarin VK; Carter DR
    J Orthop Res; 2000 Sep; 18(5):706-12. PubMed ID: 11117290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the mechanical response of paediatric bone under bending and torsion using finite element analysis.
    Altai Z; Viceconti M; Offiah AC; Li X
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1001-1009. PubMed ID: 29525976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite-element model construction for the virtual synthesis of the skulls in vertebrates: case study of Diplodocus.
    Witzel U; Preuschoft H
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):391-401. PubMed ID: 15747343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical Analysis of a Novel Intercalary Prosthesis for Humeral Diaphyseal Segmental Defect Reconstruction.
    Zhao LM; Tian DM; Wei Y; Zhang JH; Di ZL; He ZY; Hu YC
    Orthop Surg; 2018 Feb; 10(1):23-31. PubMed ID: 29484857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational simulation of the multiphasic degeneration of the bone-cartilage unit during osteoarthritis via indentation and unconfined compression tests.
    Sajjadinia SS; Haghpanahi M; Razi M
    Proc Inst Mech Eng H; 2019 Sep; 233(9):871-882. PubMed ID: 31232647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of stress and displacements of phalanx bone with the finite element method.
    Tarniţă DN; Tarniţă D; Popa D; Tarniţă R
    Rom J Morphol Embryol; 2005; 46(3):189-91. PubMed ID: 16444304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nonlinear finite element model of cartilage growth.
    Davol A; Bingham MS; Sah RL; Klisch SM
    Biomech Model Mechanobiol; 2008 Aug; 7(4):295-307. PubMed ID: 17701433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.