BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30369100)

  • 1. Dynamic PEG-Peptide Hydrogels via Visible Light and FMN-Induced Tyrosine Dimerization.
    Liu HY; Nguyen HD; Lin CC
    Adv Healthc Mater; 2018 Nov; 7(22):e1800954. PubMed ID: 30369100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation.
    Arkenberg MR; Moore DM; Lin CC
    Acta Biomater; 2019 Jan; 83():83-95. PubMed ID: 30415064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.
    Shih H; Liu HY; Lin CC
    Biomater Sci; 2017 Feb; 5(3):589-599. PubMed ID: 28174779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells.
    Liu HY; Greene T; Lin TY; Dawes CS; Korc M; Lin CC
    Acta Biomater; 2017 Jan; 48():258-269. PubMed ID: 27769941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG-peptide hydrogels.
    Arkenberg MR; Lin CC
    Biomater Sci; 2017 Oct; 5(11):2231-2240. PubMed ID: 28991963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic stiffening of cell-laden hydrogels via sequential thiol-ene and hydrazone click reactions.
    Chang CY; Johnson HC; Babb O; Fishel ML; Lin CC
    Acta Biomater; 2021 Aug; 130():161-171. PubMed ID: 34087443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture.
    Hao Y; Shih H; Muňoz Z; Kemp A; Lin CC
    Acta Biomater; 2014 Jan; 10(1):104-14. PubMed ID: 24021231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Visible Light-Cured Thiol-Acrylate Hydrogels for Studying the HIPPO Pathway Activation in Hepatocellular Carcinoma Cells.
    Lin TY; Bragg JC; Lin CC
    Macromol Biosci; 2016 Apr; 16(4):496-507. PubMed ID: 26709469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels.
    Rosales AM; Mabry KM; Nehls EM; Anseth KS
    Biomacromolecules; 2015 Mar; 16(3):798-806. PubMed ID: 25629423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Design of Hydrogel Networks with Dynamic Mechanical Properties to Mimic Matrix Remodeling.
    Wiley KL; Sutherland BP; Ogunnaike BA; Kloxin AM
    Adv Healthc Mater; 2022 Apr; 11(7):e2101947. PubMed ID: 34936227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the crosslinking kinetics of multi-arm poly(ethylene glycol) hydrogels formed via Michael-type addition.
    Kim J; Kong YP; Niedzielski SM; Singh RK; Putnam AJ; Shikanov A
    Soft Matter; 2016 Feb; 12(7):2076-85. PubMed ID: 26750719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive hydrogels made from step-growth derived PEG-peptide macromers.
    Miller JS; Shen CJ; Legant WR; Baranski JD; Blakely BL; Chen CS
    Biomaterials; 2010 May; 31(13):3736-43. PubMed ID: 20138664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography.
    Curley JL; Jennings SR; Moore MJ
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21372777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Modification of Human Decellularized Extracellular Matrix for Incorporation into Phototunable Hybrid-Hydrogel Models of Tissue Fibrosis.
    Hewawasam RS; Blomberg R; Šerbedžija P; Magin CM
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15071-15083. PubMed ID: 36917510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavin mononucleotide in visible light photoinitiating systems for multiple-photocrosslinking and photoencapsulation strategies.
    Sun G; He X; Feng M; Xu X; Chen J; Wang Y
    Acta Biomater; 2023 Dec; 172():272-279. PubMed ID: 37797710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
    Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D
    Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quinacrine Mediated Sensitization of Glioblastoma (GBM) Cells to TRAIL through MMP-Sensitive PEG Hydrogel Carriers.
    Erkoc P; Cingöz A; Onder TB; Kizilel S
    Macromol Biosci; 2017 Feb; 17(2):. PubMed ID: 27762493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling.
    Homma K; Chang AC; Yamamoto S; Tamate R; Ueki T; Nakanishi J
    Acta Biomater; 2021 Sep; 132():103-113. PubMed ID: 33744500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment.
    Mabry KM; Lawrence RL; Anseth KS
    Biomaterials; 2015 May; 49():47-56. PubMed ID: 25725554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.